K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 1

Ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)

Tương tự

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)

\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)

Cộng vế:

\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

27 tháng 3 2020

Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath

17 tháng 4 2020

tvbobnokb' n

iai

  ni;bv nn0

4 tháng 7 2021

áp dụng BDT AM-GM

\(=>a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\)

\(=>1\ge3\sqrt[3]{\left(abc\right)^2}=>1\ge27\left(abc\right)^2\)\(=>27\left(abc\right)^2\le1=>3\left(abc\right)^2\le\dfrac{1}{9}=>\left(abc\right)^2\le\dfrac{1}{27}=>abc\le\dfrac{1}{3\sqrt{3}}\)

\(=>\dfrac{8}{9abc}\ge\dfrac{8}{9.\dfrac{1}{3\sqrt{3}}}=\dfrac{8\sqrt{3}}{3}\)

\(S=a+b+c+\dfrac{1}{abc}=a+b+c+\dfrac{1}{9abc}+\dfrac{8}{9abc}\)

\(=>a+b+c+\dfrac{1}{9abc}\ge4\sqrt[4]{\dfrac{1}{9}}=\dfrac{4}{\sqrt{3}}\)

\(=>S\ge\dfrac{4}{\sqrt{3}}+\dfrac{8}{\sqrt{3}}=4\sqrt{3}\)

dấu"=" xyar ra<=>a=b=c=\(\dfrac{1}{\sqrt{3}}\)

 

4 tháng 7 2021

Các bn mà cop thì nhớ giải thích giúp mik đoạn \(a^2+b^2+c^2\ge3\sqrt[3]{abc}\) với

NV
24 tháng 4 2021

- Nếu \(abc\ge0\Rightarrow a^2+b^2+c^2+abc\ge0\) dấu "=" xảy ra khi và chỉ khi \(a=b=c=0\)

- Nếu \(abc< 0\Rightarrow\)  trong 3 số a; b; c có ít nhất 1 số âm

Không mất tính tổng quát, giả sử \(c< 0\Rightarrow ab>0\)

Mà \(\left\{{}\begin{matrix}-2\le c< 0\\ab>0\end{matrix}\right.\Leftrightarrow abc\ge-2ab\)

\(\Rightarrow a^2+b^2+c^2+abc\ge a^2+b^2-2ab+c^2=\left(a-b\right)^2+c^2>0\) (không thỏa mãn)

Vậy \(a=b=c=0\)

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
$a^2+1\geq 2a$

$b^2+1\geq 2b$

$c^2+1\geq 2c$

$\Rightarrow a^2+b^2+c^2+3\geq 2(a+b+c)=4+a+b+c$

$\Rightarrow a^2+b^2+c^2\geq a+b+c+1> a+b+c$ (đpcm)

9 tháng 9 2023

làm thêm cho em câu a3+b3+c3>=a2+b2+c2 với đc ko ạ?