Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab+bc+ca\le1\)
\(\Rightarrow\sqrt{a^2+1}\ge\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}\)
\(tương\) \(tự\Rightarrow\Sigma\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{a+b}+\dfrac{b}{b+c}}{2}+\dfrac{\dfrac{c}{b+c}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}\left(đpcm\right)\)
\(dấu"="\Leftrightarrow a=b=c=\sqrt{\dfrac{1}{3}}\)
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:
\(VT=\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\)
Mặt khác:
\(\sqrt{\frac{x}{x+y}}=\sqrt{\frac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)
Áp dụng Bđt Cauchy-Schwarz ta có:
\(VT^2\le2\left[\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right]\left(x+y+z\right)\)
\(\Leftrightarrow VT^2\le\frac{4\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Vì \(VP^2=\frac{9}{2}\) nên cần chứng minh \(VT^2\le\frac{9}{2}\)
\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\left(x+y+z\right)\left(xy+yz+zx\right)\)
bn tự lm tiếp
\(VT=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\)
\(VT\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)
- Ta có : \(a^3+b^3+c^3=3abc\)
=> \(a^3+b^3+c^3-3abc=0\)
=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Mà \(a+b+c\ne0\)
=> \(a^2+b^2+c^2-ab-bc-ac=0\)
=> \(\frac{\left(a^2-2ab+b^2\right)+\left(b^2-2ac+c^2\right)+\left(c^2-2ac+a^2\right)}{2}=0\)
=> \(\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}=0\)
=> \(a-b=b-c=c-a=0\)
=> \(a=b=c\)
- Thay a = b = c vào biểu thức N ta được :
\(N=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
Vậy giá trị của N = \(\frac{1}{3}\) khi \(a^3+b^3+c^3=3abc\) và \(a+b+c\ne0\)