\(P=a\sqrt{b}+b\sqrt{c}+c\sqrt{a}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

Ta có:

\(\sqrt[3]{a+b}=\sqrt[3]{\frac{9}{4}}.\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{\left(a+b\right)+\frac{2}{3}+\frac{2}{3}}{3}\)

Tương tự:

\(\sqrt[3]{b+c}\le\frac{\left(b+c\right)+\frac{2}{3}+\frac{2}{3}}{3}\)

\(\sqrt[3]{c+a}\le\frac{\left(c+a\right)+\frac{2}{3}+\frac{2}{3}}{3}\)

\(\Rightarrow\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\le\sqrt[3]{\frac{9}{4}}.\frac{2\left(a+b+c\right)+4}{3}\)

\(=\sqrt[3]{\frac{9}{4}}.\frac{6}{3}=\sqrt[3]{18}\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}a+b=\frac{2}{3}\\b+c=\frac{2}{3}\\c+a=\frac{2}{3}\end{cases}}\)\(\Leftrightarrow a=b=c=\frac{1}{3}\))

20 tháng 12 2019

Em làm sai tại đây nhé:

\(\sqrt[3]{a+b}=\sqrt[3]{\frac{9}{4}}.\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\sqrt[3]{\frac{9}{4}}.\frac{1}{3}.\left(a+b+\frac{2}{3}+\frac{2}{3}\right)\)

10 tháng 9 2018

\(S=\sqrt{a+b+c}+\sqrt{b+c+d}+\sqrt{c+d+a}+\sqrt{d+a+b}\)

\(\le\frac{a+b+c}{\sqrt{3}}+\frac{\sqrt{3}}{4}+\frac{b+c+d}{\sqrt{3}}+\frac{\sqrt{3}}{4}+\frac{c+d+a}{\sqrt{3}}+\frac{\sqrt{3}}{4}+\frac{d+a+b}{\sqrt{3}}+\frac{\sqrt{3}}{4}\)

\(=\sqrt{3}+\frac{3}{\sqrt{3}}\left(a+b+c+d\right)=2\sqrt{3}\)

8 tháng 8 2016

Áp dụng bđt Bunhiacopxki :

\(A^2=\left(1.\sqrt{2a+b+1}+1.\sqrt{2b+c+1}+1.\sqrt{2c+a+1}\right)^2\)

\(\le\left(1^2+1^2+1^2\right)\left(2a+b+1+2b+c+1+2c+a+1\right)\)

\(\Rightarrow A^2\le3.3\left(a+b+c+1\right)\)

\(\Rightarrow A^2\le36\Rightarrow A\le6\) (Vì A > 0)

Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}\sqrt{2a+b+1}=\sqrt{2b+c+1}=\sqrt{2c+a+1}\\a+b+c=3\end{cases}\)

\(\Leftrightarrow a=b=c=1\)

Vậy A đạt giá trị lớn nhất bằng 6 tại a = b = c = 1

27 tháng 7 2017

hay

17 tháng 8 2019

Để ý: \(ab+bc+ca=\frac{\left[\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)\right]}{2}\).

Do đó đặt  \(a^2+b^2+c^2=x>0;a+b+c=y>0\). Bài toán được viết lại thành:

Cho \(y^2+5x=24\), tìm max:

\(P=\frac{x}{y}+\frac{y^2-x}{2}=\frac{5x}{5y}+\frac{y^2-x}{2}\)

\(=\frac{24-y^2}{5y}+\frac{y^2-\frac{24-y^2}{5}}{2}\)

\(=\frac{24-y^2}{5y}+\frac{3\left(y^2-4\right)}{5}\)\(=\frac{3y^3-y^2-12y+24}{5y}\)

Đặt \(y=t\). Dễ thấy \(12=3\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)=3t^2-5\left(ab+bc+ca\right)\)

Và dễ dàng chứng minh \(ab+bc+ca\le3\)

Suy ra \(3t^2=12+5\left(ab+bc+ca\right)\le27\Rightarrow t\le3\). Mặt khác do a, b, c>0 do đó \(0< t\le3\).

Ta cần tìm Max P với \(P=\frac{3t^3-t^2-12t+24}{5t}\)và \(0< t\le3\)

Ta thấy khi t tăng thì P tăng. Do đó P đạt giá trị lớn nhất khi t lớn nhất.

Khi đó P = 3. Vậy...

9 tháng 7 2019

Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)

mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac

\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)

7 tháng 10 2017

fdsafdsaf

fdsafsdaf

fdasfadsf

2 tháng 12 2016


Áp dụng BĐT Bunhiacopxki : 

\(P^2=\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+a}\right)\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)\)

\(\Leftrightarrow P^2\le6\left(a+b+c\right)\Leftrightarrow P^2\le18\Leftrightarrow P\le\sqrt{18}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}a+b+c=3\\\sqrt{a+b}=\sqrt{b+c}=\sqrt{c+a}\end{cases}}\) \(\Leftrightarrow a=b=c=1\)

Vậy ................................................