Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(a^2+2b^2+3=a^2+b^2+b^2+1+2.\)
áp dụng BĐT cauchy
=>\(a^2+2b^2+3>=2ab+2b+2=2\left(ab+b+1\right)\)
=>\(\frac{1}{a^2+2b^2+3}< =\frac{1}{2\left(ab+b+1\right)}\)
tương tự ta có \(\hept{\frac{1}{b^2+2c^2+3}< =\frac{1}{2\left(bc+c+1\right)}}\),\(\frac{1}{c^2+2a^2+3}< =\frac{1}{2\left(ac+a+1\right)}\)
=>VT<=\(\frac{1}{2}.\left(\frac{1}{ab+b+1}+\frac{1}{ac+a+1}+\frac{1}{bc+c+1}\right)\)
<=>VT<=\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{abc}{ac+a^2bc+abc}+\frac{abc}{bc+c+abc}\right)\)(do abc=1)
<=>VT<=\(\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{b}{ab+b+1}+\frac{ab}{ab+b+1}\right)\)=\(\frac{1}{2}\left(\frac{ab+b+1}{ab+b+1}\right)=\frac{1}{2}\)(đpcm)
Dấu bằng xảy ra khi a=b=c=1
1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3)
Tại có: abc=1 =>a=1;b=1;c=1.
Syu ra: 1/(1+2.1+3)+1/(1+2.1+3)+1/(1+2.1+3)
=1/6+1/6+1/6=1/2
=>1/(a^2+2b^2+3)+1/(b^2+2c^2+3)+1/(c^2+2a^2+3) \(\le\)1/2
=> đpcm
Ta có \(1=a+b+c\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{abc}\)
Theo đề bài ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}\)
\(\ge\frac{3\sqrt[3]{a^2b^2c^2}}{abc}=\frac{3}{\sqrt[3]{abc}}\ge9\)
Cho a + b + c = 3. Chứng minh \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)lớn hơn hoặc bằng 3
tìm x y z biết
\(\sqrt{2016.x^2+4}+\sqrt{2017y^2+9}=9-\sqrt{2019z^2+25}\)
đăng bài này nè
Câu 1:
- Chứng minh a3+b3+c3=3abc thì a+b+c=0
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
- Chứng minh a3+b3+c3=3abc thì a=b=c
Áp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)
hỏi cái j ấy
Đề yêu cầu tìm GTNN của B phải không bạn?