Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Bài này sử dụng cách đẳng thức:
\(a^2+b^2+c^2-ab-bc-ca=\frac{1}{2}.\Sigma\left(a-b\right)^2\)
\(27\left(a+b\right)\left(b+c\right)\left(c+a\right)-8\left(a+b+c\right)^3\)
\(=\Sigma\left(-4a-4b-c\right)\left(a-b\right)^2\)
--------------------------------------------------
\(BĐT\Leftrightarrow\frac{8\left(a^2+b^2+c^2-ab-bc-ca\right)}{ab+bc+ca}+\frac{27\left(a+b\right)\left(b+c\right)\left(c+a\right)-8\left(a+b+c\right)^3}{\left(a+b+c\right)^3}\ge0\) (tự hiểu:v)
\(\Leftrightarrow\frac{4.\frac{1}{2}\Sigma\left(a-b\right)^2}{ab+bc+ca}+\frac{\Sigma\left(-4a-4b-c\right)\left(a-b\right)^2}{\left(a+b+c\right)^3}\ge0\)
\(\Leftrightarrow\Sigma\left(a-b\right)^2\left(\frac{2}{ab+bc+ca}-\frac{4a+4b+c}{\left(a+b+c\right)^3}\right)\ge0\)
Ta chỉ cần chứng minh \(\frac{2}{ab+bc+ca}-\frac{4a+4b+c}{\left(a+b+c\right)^3}>0\) (rồi tương tự các biểu thức còn lại phía sau:v)
\(\Leftrightarrow\frac{2\left(a+b+c\right)^3-\left(4a+4b+c\right)\left(ab+bc+ca\right)}{\left(ab+bc+ca\right)\left(a+b+c\right)^3}>0\)
\(\Leftrightarrow\frac{2a^3+2a^2b+2a^2c+2ab^2+3abc+5ac^2+2b^3+2b^2c+5bc^2+2c^3}{\left(ab+bc+ca\right)\left(a+b+c\right)^3}>0\) (luôn đúng với mọi a, b, c > 0)
Như vậy tương tự các biểu thức còn lại phía sau ta có đpcm.
Đẳng thức xảy ra khi a = b = c
áp dụng bất đẳng thức: 1+b2>=2b. tương tự.....
ad bđt cauchy: a/b+b/c+c/a>=3∛a/b.b/c.c/a=3
P>=\(\dfrac{2ab}{bc}\)+\(\dfrac{2bc}{ca}\)+\(\dfrac{2ca}{ab}\) =2(\(\dfrac{a}{b}\)+\(\dfrac{b}{c}\)+ \(\dfrac{c}{a}\))>=2.3=6
Pmin khi a=b=c=1
Áp dụng bđt : \(1+b^2>=2b\)
bđt cauchy : \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}>3\sqrt[3]{}\) a\b . b\c . c\a = 3
Bài 1
\(VT=\dfrac{a^2}{ab^2+abc+ac^2}+\dfrac{b^2}{c^2b+abc+a^2b}+\dfrac{c^2}{a^2c+abc+b^2c}\)
Áp dụng bđt Cauchy dạng phân thức
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b\right)+abc+ac\left(a+c\right)+abc+bc\left(b+c\right)+abc}\)
\(\Leftrightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{ab\left(a+b+c\right)+ac\left(a+b+c\right)+bc\left(a+b+c\right)}=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)\left(ab+bc+ac\right)}\)
\(\Leftrightarrow VT\ge\dfrac{a+b+c}{ab+bc+ac}\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c\)
Bài 2
\(VT=\left(\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}\right)\left[\left(\dfrac{\sqrt{a}}{b+c}\right)^2+\left(\dfrac{\sqrt{b}}{c+a}\right)^2+\left(\dfrac{\sqrt{c}}{a+b}\right)^2\right]\)
Áp dụng bđt Bunhiacopxki ta có
\(VT\ge\left(\sqrt{a}.\dfrac{\sqrt{a}}{b+c}+\sqrt{b}.\dfrac{\sqrt{b}}{c+a}+\sqrt{c}.\dfrac{\sqrt{c}}{a+b}\right)^2\)
\(\Leftrightarrow VT\ge\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
Áp dụng bđt Cauchy dạng phân thức ta có
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}=\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ac\right)}=\dfrac{3}{2}\)
\(\Rightarrow\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)^2\ge\left(\dfrac{3}{2}\right)^2=\dfrac{9}{4}\)
\(\Rightarrow VT\ge\dfrac{9}{4}\left(đpcm\right)\)
Dấu '' = '' xảy ra khi \(a=b=c\)
3/ Áp dụng bất đẳng thức AM-GM, ta có :
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{\left(ab\right)^2}{\left(bc\right)^2}}=\dfrac{2a}{c}\)
\(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge2\sqrt{\dfrac{\left(bc\right)^2}{\left(ac\right)^2}}=\dfrac{2b}{a}\)
\(\dfrac{c^2}{a^2}+\dfrac{a^2}{b^2}\ge2\sqrt{\dfrac{\left(ac\right)^2}{\left(ab\right)^2}}=\dfrac{2c}{b}\)
Cộng 3 vế của BĐT trên ta có :
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\left(\text{đpcm}\right)\)
Bài 1:
Áp dụng BĐT AM-GM ta có:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{1}{2\sqrt{a^2.bc}}+\frac{1}{2\sqrt{b^2.ac}}+\frac{1}{2\sqrt{c^2.ab}}=\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2abc}\)
Tiếp tục áp dụng BĐT AM-GM:
\(\sqrt{bc}+\sqrt{ac}+\sqrt{ab}\leq \frac{b+c}{2}+\frac{c+a}{2}+\frac{a+b}{2}=a+b+c\)
Do đó:
\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\leq \frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2abc}\leq \frac{a+b+c}{2abc}\) (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài này mẫu số là \(\left(a+b+c\right)^3\) thì đúng hơn, mũ 2 cách làm vẫn y hệt nhưng cho 1 kết quả rất xấu
\(A\ge3\left(a^2+b^2+c^2\right)+\dfrac{24\left(a+b+c\right)\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\)
\(=3\left(a+b+c\right)^2+\dfrac{192}{a+b+c}-48\)
\(=\dfrac{\sqrt{6}}{3}\left(a+b+c\right)^2+\dfrac{96}{a+b+c}+\dfrac{96}{a+b+c}+\left(3-\dfrac{\sqrt{6}}{3}\right)\left(a+b+c\right)^2-48\)
\(\ge3\sqrt[3]{\dfrac{96^2.\sqrt{6}}{3}}+\left(3-\dfrac{\sqrt{6}}{3}\right).3\left(ab+bc+ca\right)-48=...\)
Thầy giải giúp em mấy bài kia luôn với ạ