\(a.b.c>0\) và \(a+2b+3c\ge5\)

Tìm 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2019

t có cách đoán nè nhưng hơi mất công xíu:) Với đk phải có máy tính  casio:)

4 tháng 11 2019

tth_new OK mem,nhà có casio.t sẽ hậu tạ:) Nhưng chả biết hậu tạ ntn nữa.

30 tháng 12 2019

Kĩ thuật gì đâu-_-

\(A=\Sigma_{cyc}\frac{a^2}{b^2+1}=\Sigma_{cyc}a^2\left(1-\frac{b^2}{b^2+1}\right)\)

\(\ge\Sigma_{cyc}a^2\left(1-\frac{b}{2}\right)=\Sigma_{cyc}a^2-\Sigma_{cyc}\frac{a^2b}{2}\)

\(=\frac{\left(a^2+b^2+c^2\right)+\left[\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\right]}{2}\)

\(=\frac{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^2+b^2+c^2\right)}{3}}{2}\)

\(=\frac{a^2+b^2+c^2+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2}{2}\)

\(\ge\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c 

30 tháng 12 2019

Lộn: a = b = c = 1 nha:v

26 tháng 11 2019

Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\)  lien tiep la duoc 

Chuc bn thanh cong

27 tháng 11 2019

svác-xơ ngược dấu.

\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)

Tương tự 

\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)

\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)

Cộng lại ta được:

\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)

13 tháng 7 2017

anh nên lên học 24h để được giả đáp tốt hơn !!

8 tháng 8 2018

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=>  \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)

đến đây ez tự làm nốt nhé, ko ra ib mk

1 tháng 5 2019

Theo đề +áp dụng cô si ,ta có:

\(1\ge2a+3b\ge2\sqrt{6ab}\\ \Rightarrow ab\le\frac{1}{24}\)(1)

ÁP dụng cô si cho 2 số ko âm ,ta có:

\(4a^2+9b^2\ge12ab\)(2)

Thay (1),(2) vào ,ta có:

\(36a^2b^2\left(4a^2+9b^2\right)\le36\cdot\frac{1}{24^2}\cdot12\cdot\frac{1}{24}=\frac{1}{32}\)

đến đây thì xong oy

Học tốt nha

^-^

1 tháng 5 2019

ngược dấu kìa 

11 tháng 4 2017

Ta có:

\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)(1)

Tương tự ta có:

\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\left(2\right)\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{16}{a+b+2c}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\le4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=16\)

\(\Leftrightarrow\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)