Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kĩ thuật gì đâu-_-
\(A=\Sigma_{cyc}\frac{a^2}{b^2+1}=\Sigma_{cyc}a^2\left(1-\frac{b^2}{b^2+1}\right)\)
\(\ge\Sigma_{cyc}a^2\left(1-\frac{b}{2}\right)=\Sigma_{cyc}a^2-\Sigma_{cyc}\frac{a^2b}{2}\)
\(=\frac{\left(a^2+b^2+c^2\right)+\left[\left(a^2+b^2+c^2\right)-\left(a^2b+b^2c+c^2a\right)\right]}{2}\)
\(=\frac{\left(a^2+b^2+c^2\right)+\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)-3\left(a^2+b^2+c^2\right)}{3}}{2}\)
\(=\frac{a^2+b^2+c^2+a\left(a-b\right)^2+b\left(b-c\right)^2+c\left(c-a\right)^2}{2}\)
\(\ge\frac{\left(a+b+c\right)^2}{6}=\frac{3}{2}\)
Đẳng thức xảy ra khi a = b = c
Ap dung bdt \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right).\left(x,y>0\right)\) lien tiep la duoc
Chuc bn thanh cong
svác-xơ ngược dấu.
\(\frac{16}{2a+3b+3c}=\frac{16}{\left(a+b\right)+\left(c+b\right)+\left(b+c\right)+\left(a+c\right)}\le\frac{1}{a+b}+\frac{2}{c+b}+\frac{1}{c+a}\)
Tương tự
\(\frac{16}{2b+3c+3a}\le\frac{1}{a+b}+\frac{1}{b+c}+\frac{2}{c+a}\)
\(\frac{16}{2c+3a+3b}\le\frac{2}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\)
Cộng lại ta được:
\(16VT\le4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)
\(\Rightarrow VT\le\frac{1}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(đpcm\right)\)
\(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+c^3-3abc=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
đến đây ez tự làm nốt nhé, ko ra ib mk
Theo đề +áp dụng cô si ,ta có:
\(1\ge2a+3b\ge2\sqrt{6ab}\\ \Rightarrow ab\le\frac{1}{24}\)(1)
ÁP dụng cô si cho 2 số ko âm ,ta có:
\(4a^2+9b^2\ge12ab\)(2)
Thay (1),(2) vào ,ta có:
\(36a^2b^2\left(4a^2+9b^2\right)\le36\cdot\frac{1}{24^2}\cdot12\cdot\frac{1}{24}=\frac{1}{32}\)
đến đây thì xong oy
Học tốt nha
^-^
Ta có:
\(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{2a+b+c}\)(1)
Tương tự ta có:
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\ge\frac{16}{a+2b+c}\left(2\right)\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\ge\frac{16}{a+b+2c}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(16\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\le4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=16\)
\(\Leftrightarrow\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
t có cách đoán nè nhưng hơi mất công xíu:) Với đk phải có máy tính casio:)
tth_new OK mem,nhà có casio.t sẽ hậu tạ:) Nhưng chả biết hậu tạ ntn nữa.