Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(bdt\Leftrightarrow a^2+b^2+c^2-ab-ac-bc-\frac{\left(a+b\right)^2}{26}-\frac{\left(b-c\right)^2}{6}-\frac{\left(c-a\right)^2}{2009}\ge0\)
\(\Leftrightarrow\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]-\frac{\left(a+b\right)^2}{26}-\frac{\left(b-c\right)^2}{6}-\frac{\left(c-a\right)^2}{2009}\ge0\)
Đặt \(a-b=x;b-c=y;c-a=z\) nên
\(bdt\Leftrightarrow\frac{1}{2}\left(x^2+y^2+z^2\right)-\frac{x^2}{26}-\frac{y^2}{6}-\frac{z^2}{2009}\ge0\)
\(\Leftrightarrow\left(\frac{x^2}{2}-\frac{x^2}{26}\right)+\left(\frac{y^2}{2}-\frac{y^2}{6}\right)+\left(\frac{z^2}{2}-\frac{z^2}{2009}\right)\ge0\)
\(\Leftrightarrow\frac{6x^2}{13}+\frac{y^2}{3}+\frac{2007z^2}{4018}\ge0\)(luôn đúng \(\forall x;y;z\))
Vậy BTĐ đã được chứng minh
Bài 1:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{ab+1}+\frac{1}{bc+1}+\frac{1}{ca+1}\geq \frac{9}{ab+1+bc+1+ca+1}=\frac{9}{ab+bc+ac+3}(1)\)
Theo BĐT AM-GM:
\(ab+bc+ac\leq a^2+b^2+c^2\Leftrightarrow ab+bc+ac\leq 3(2)\)
Từ \((1);(2)\Rightarrow \frac{1}{ab+1}+\frac{1}{bc+1}+\frac{1}{ca+1}\geq \frac{9}{ab+bc+ac+3}\geq \frac{9}{3+3}=\frac{3}{2}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
\(2x^2+2y^2=5xy\Leftrightarrow2x^2+2y^2-5xy=0\)
\(\Leftrightarrow\left(2x-y\right)\left(x-2y\right)=0\Leftrightarrow\orbr{\begin{cases}x=\frac{y}{2}\\x=2y\end{cases}}\)
Mặt khác : x > y > 0 \(\Rightarrow x=2y\)
Ta có : \(E=\frac{x+y}{x-y}=\frac{2y+y}{2y-y}=\frac{3y}{y}=3\)
a) Dễ tự làm đi
b) Xét 1 + a2 = ab + bc + ca + a2
= b(c + a) + a(c + a)
= (c + a)(b + a)
Cmtt ta có : 1 + b2 = (c + b)(a + b)
1 + c2 = (b+c)( a + c)
Do đó : A = \(\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}\)\(=\frac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a+b\right)\left(c+b\right)\left(b+a\right)\left(c+a\right)\left(a+c\right)\left(b+c\right)}\)= 1
Xét a2 + 2bc - 1 = a2 + 2bc - ab - bc - ca
= a2 - ab + bc - ca
= a(a-b) - c(a-b)
= (a-b)(a-c)
Cmtt ta cũng có : b2 + 2ac - 1 = (b-c)(b-a)
c2 + 2ab - 1 = (c-a)(c-b)
Do đó : \(B=\frac{\left(a^2+2bc-1\right)\left(b^2+2ac-1\right)\left(c^2+2ba-1\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(b-a\right)\left(c-a\right)\left(c-b\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
= -1
\(P=\frac{a^2}{a^3+abc}+\frac{b^2}{b^3+abc}+\frac{c^2}{c^3+abc}.\) " nhân cả tử cả mẫu cho a , b , c lần lượt
\(\frac{a^2}{a^3+abc}\le\frac{1}{4}\left(\frac{a^2}{a^3}+\frac{a^2}{abc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{a}{bc}\right)\left(cosishaw\right)\)
\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\)
từ đề bài ta suy ra
\(bc=\frac{a^2+B^2+c^2}{a};ac=\frac{a^2+B^2+c^2}{b};ab=\frac{a^2+b^2+c^2}{c}.\)
\(\frac{a}{bc}=\frac{a}{\frac{a^2+B^2+c^2}{a}}=\frac{a^2}{a^2+B^2+c^2}\)
\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}\right)\)
\(P\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+1\right)\)
từ đề bài suy ra tiếp
\(a=\frac{a^2+b^2+c^2}{bc};\frac{1}{a}=\frac{1}{\frac{a^2+b^2+c^2}{bc}}=\frac{bc}{a^2+B^2+c^2}\) " tương tự với các số hạng
suy ra
\(P\le\frac{1}{4}\left(\frac{bc+ac+Ab}{a^2+b^2+c^2}+1\right)\)
\(bc+ac+ab\le a^2+B^2+c^2\left(cosi\right)\)
\(P\le\frac{1}{4}\left(1+1\right)=\frac{1}{2}\)
max của P là 1/2
dấu = xảy ra khi a=b=c=3
thử thay vào ta được
\(\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}+\frac{a}{a^2+a^2}=\frac{a}{2a^2}+\frac{a}{2a^2}+\frac{a}{2a^2}=\frac{3}{2a}=\frac{3}{2.3}=\frac{1}{2}\) " đúng "
sửa lại cái đề bài thành \(a^2+b^2+c^2=abc\) đi
không bọn não chó nó tích sai cho tao đấy dcmmm
bọn ngu học :)