\(S=a+b+c+\dfrac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2021

áp dụng BDT AM-GM

\(=>a^2+b^2+c^2\ge3\sqrt[3]{\left(abc\right)^2}\)

\(=>1\ge3\sqrt[3]{\left(abc\right)^2}=>1\ge27\left(abc\right)^2\)\(=>27\left(abc\right)^2\le1=>3\left(abc\right)^2\le\dfrac{1}{9}=>\left(abc\right)^2\le\dfrac{1}{27}=>abc\le\dfrac{1}{3\sqrt{3}}\)

\(=>\dfrac{8}{9abc}\ge\dfrac{8}{9.\dfrac{1}{3\sqrt{3}}}=\dfrac{8\sqrt{3}}{3}\)

\(S=a+b+c+\dfrac{1}{abc}=a+b+c+\dfrac{1}{9abc}+\dfrac{8}{9abc}\)

\(=>a+b+c+\dfrac{1}{9abc}\ge4\sqrt[4]{\dfrac{1}{9}}=\dfrac{4}{\sqrt{3}}\)

\(=>S\ge\dfrac{4}{\sqrt{3}}+\dfrac{8}{\sqrt{3}}=4\sqrt{3}\)

dấu"=" xyar ra<=>a=b=c=\(\dfrac{1}{\sqrt{3}}\)

 

4 tháng 7 2021

Các bn mà cop thì nhớ giải thích giúp mik đoạn \(a^2+b^2+c^2\ge3\sqrt[3]{abc}\) với

8 tháng 9 2016

ui..khó qw ~ mún giải lắm nhưng hk đc...e ms lp 7 thoy ak***ahihi^^

10 tháng 9 2016

nè  đọc cái bất đnagử thức shur và kĩ năng đặt ẩn p-q-r đi là giải ra , nên tìm kiếm trong ộng tổ google đi nhé\

16 tháng 9 2020

Đặt \(A=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)

Ta có : \(\frac{a}{b^2+c^2}=\frac{a}{3-a^2}=\frac{a}{\sqrt{\left(3-a^2\right)\left(3-a^2\right)}}=\frac{a^2}{a\sqrt{\left(3-a^2\right)\left(3-a^2\right)}}\)

\(=\frac{a^2\sqrt{2}}{\sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}}\)

Theo BĐT Cô - si ta có :

\(0< \sqrt[3]{2a^2.\left(3-a^2\right).\left(3-a^2\right)}\le\frac{2a^2+3-a^2+3-a^2}{3}=2\)

\(\Leftrightarrow0< 2a^2.\left(3-a^2\right)\left(3-a^2\right)\le8\)

\(\Leftrightarrow0< \sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}\le2\sqrt{2}\)

\(\Leftrightarrow\frac{a^2\sqrt{2}}{\sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}}\ge\frac{a^2\sqrt{2}}{2\sqrt{2}}=\frac{a^2}{2}\)

Hay : \(\frac{a}{b^2+c^2}\ge\frac{a^2}{2}\)

Chứng minh tương tự ta có : \(\frac{b}{c^2+a^2}\ge\frac{b^2}{2};\frac{c}{a^2+b^2}\ge\frac{c^2}{2}\)

Do đó : \(A\ge\frac{1}{2}\left(a^2+b^2+c^2\right)=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(Min\) \(A=\frac{3}{2}\) khi \(a=b=c=1\)

17 tháng 9 2020

Gọi biểu thức là N

Dự đoán \(MinN=\frac{3}{2}\)khi a = b = c = 1, ta dùng UCT giải quyết bài toán

Ta viết lại \(N=\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\)(do \(a^2+b^2+c^2=3\)theo giả thiết)

Xét bất đẳng thức phụ \(\frac{a}{3-a^2}\ge\frac{a^2}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{a\left(a+2\right)\left(a-1\right)^2}{2\left(3-a^2\right)}\ge0\)(Đúng vì \(3-a^2=b^2+c^2>0\)và a > 0)

Tương tự: \(\frac{b}{3-b^2}\ge\frac{b^2}{2}\)(1); \(\frac{c}{3-c^2}\ge\frac{c^2}{2}\)(2)

Cộng theo vế ba bất đẳng thức (*), (1) và (2), ta được: \(\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{a^2+b^2+c^2}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

25 tháng 4 2018

Tớ chưa học bđt Cauchy-Schwwarz và hệ quả AM-GM thì sao?

10 tháng 5 2018

\(\dfrac{a^3}{b+c}+\dfrac{b^3}{a+c}+\dfrac{c^3}{a+b}\)

\(=\dfrac{a^4}{ab+ac}+\dfrac{b^4}{ab+bc}+\dfrac{c^4}{ac+bc}\)

\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ac\right)}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{2\left(a^2+b^2+c^2\right)}\)

\(=\dfrac{a^2+b^2+c^2}{2}=\dfrac{1}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{\sqrt{3}}\)

30 tháng 6 2018

Bài 2:

Áp dụng BĐT: \(x^2+y^2+z^2\ge xy+yz+xz\), ta có:

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)

Lại áp dụng tương tự ta có:

\(\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\ge ab^2c+abc^2+a^2bc\)

\(\Rightarrow a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (2)

Từ (1) và (2) suy ra:

\(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

30 tháng 6 2018

Bài 1:

Áp dụng BĐT Cô -si, ta có:

\(\dfrac{a^2}{b^3}+\dfrac{1}{a}+\dfrac{1}{a}\ge\sqrt[3]{\dfrac{a^2}{b^3}.\dfrac{1}{a}.\dfrac{1}{a}}=\dfrac{3}{b}\)

\(\dfrac{b^2}{c^3}+\dfrac{1}{b}+\dfrac{1}{b}\ge\sqrt[3]{\dfrac{b^2}{c^3}.\dfrac{1}{b}.\dfrac{1}{b}}=\dfrac{3}{c}\)

\(\dfrac{c^2}{a^3}+\dfrac{1}{c}+\dfrac{1}{c}\ge\sqrt[3]{\dfrac{c^2}{a^3}.\dfrac{1}{c}.\dfrac{1}{c}}=\dfrac{3}{a}\)

Cộng vế theo vế ta được:

\(\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{a^2}{a^3}+\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\ge3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^3}+\dfrac{b^2}{c^3}+\dfrac{c^2}{a^3}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

p/s: không chắc lắm, có gì sai xót xin giúp đỡ