Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cauchy ngược dấu ta có:
\(\dfrac{1}{a^2+1}=1-\dfrac{a^2}{a^2+1}\ge1-\dfrac{a^2}{2a}=1-\dfrac{a}{2}\)
Chứng minh tương tự ta có:
\(\dfrac{1}{b^2+1}\ge1-\dfrac{b}{2};\dfrac{1}{c^2+1}\ge1-\dfrac{c}{2}\)
Từ đó ta có: \(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge1-\dfrac{a}{2}+1-\dfrac{b}{2}+1-\dfrac{c}{2}=\)\(=3-\dfrac{a+b+c}{2}=3-\dfrac{3}{2}=\dfrac{3}{2}\left(đpcm\right)\)
Áp dụng BĐT Cauchy dạng Engel , ta có :
\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\) ≥ \(\dfrac{\left(1+1+1\right)^2}{a^2+b^2+c^2+3}=\dfrac{9}{a^2+b^2+c^2+3}\left(1\right)\)
Ta có BĐT : \(a^2+b^2+c^2\text{≥}ab+bc+ac\)
⇔ \(3\left(a^2+b^2+c^2\right)\text{≥}\left(a+b+c\right)^2\)
⇔ \(a^2+b^2+c^2\text{≥}\dfrac{9}{3}=3\left(2\right)\)
Từ ( 1 ; 2 ) ⇒ đpcm .
"=" ⇔ \(a=b=c=\dfrac{1}{3}\)
Có BĐT: \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
Ta có:
\(VT=\)\(\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)
\(=\dfrac{1+1+c^2}{\left(a^2+b^2+1\right)\left(1+1+c^2\right)}+\dfrac{1+1+a^2}{\left(b^2+c^2+1\right)\left(1+1+a^2\right)}+\dfrac{1+1+b^2}{\left(c^2+a^2+1\right)\left(1+1+b^2\right)}\)
Áp dụng BĐT Bunhiacopski cho mẫu số, ta có:
\(\left(a^2+b^2+c^2\right)\left(1+1+c^2\right)\ge\left(a+b+c\right)^2\)
\(\left(b^2+c^2+1\right)\left(1+1+a^2\right)\ge\left(b+c+a\right)^2\)
\(\left(c^2+a^2+1\right)\left(1+1+b^2\right)\ge\left(c+a+b\right)^2\)
\(\Rightarrow VT\le\dfrac{1+1+c^2}{\left(a+b+c\right)^2}+\dfrac{1+1+a^2}{\left(b+c+a\right)^2}+\dfrac{1+1+b^2}{\left(c+a+b\right)^2}=\dfrac{6+a^2+b^2+c^2}{\left(a+b+c\right)^2}\le\dfrac{6+ab+bc+ca}{3\left(ab+bc+ca\right)}=\dfrac{6+3}{3.3}=1\)
\("="\Leftrightarrow a=b=c=1\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Chắc đề bị nhầm rồi.
\(\dfrac{a}{\sqrt{b+1}}+\dfrac{b}{\sqrt{c+1}}+\dfrac{c}{\sqrt{a+1}}\ge2\sqrt{2}\left(\dfrac{a}{3+b}+\dfrac{b}{3+c}+\dfrac{c}{3+a}\right)\)
\(\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{3\left(a+b+c\right)+\left(ab+bc+ca\right)}\ge2\sqrt{2}.\dfrac{9}{9+\dfrac{\left(a+b+c\right)^2}{3}}=2\sqrt{2}.\dfrac{9}{12}=\dfrac{3}{\sqrt{2}}\)
Lời giải:
Ta có:
\(\frac{a^8+b^8+c^8}{a^3b^3c^3}\geq \frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)(*)\)
Áp dụng BĐT AM-GM:
\(\left\{\begin{matrix} a^8+b^8\geq 2a^4b^4\\ b^8+c^8\geq 2b^4c^4\\ c^8+a^8\geq 2c^4a^4\end{matrix}\right.\Rightarrow a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\)
Tiếp tục áp dụng AM-GM:
\(a^8+b^8+a^4b^4+c^8\geq 4\sqrt[4]{a^{12}b^{12}c^8}=4a^3b^3c^2\)
\(b^8+c^8+b^4c^4+a^8\geq 4b^3c^3a^2\)
\(c^8+a^8+c^4a^4+b^8\geq 4c^3a^3b^2\)
Cộng lại: \(3(a^8+b^8+c^8)+(a^4b^4+b^4c^4+c^4a^4)\geq 4a^2b^2c^2(ab+bc+ca)\)
Mà \(a^8+b^8+c^8\geq a^4b^4+b^4c^4+c^4a^4\Rightarrow 4(a^8+b^8+c^8)\geq 4a^2b^2c^2(ab+bc+ac)\)
hay \(a^8+b^8+c^8\geq a^2b^2c^2(ab+bc+ac)\Rightarrow (*)\) đúng
Ta có đpcm.
Bài 1
\(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}=a-\dfrac{a^2}{a+1}+b-\dfrac{b^2}{b+1}+c-\dfrac{c^2}{c+1}\)
\(=1-\left(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\right)\)
Áp dụng bđt Cauchy dạng phân thức \(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{1}{1+3}=\dfrac{1}{4}\)
\(\Rightarrow1-\left(\dfrac{a^2}{a+1}+\dfrac{b^2}{b+1}+\dfrac{c^2}{c+1}\right)\le1-\dfrac{1}{4}=\dfrac{3}{4}\)
\(\Rightarrow GTLN=\dfrac{3}{4}\) Dấu ''='' xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Bài 2
\(P=\dfrac{a+1}{b^2+1}+\dfrac{b+1}{c^2+1}+\dfrac{c+1}{a^2+1}=\dfrac{a}{b^2+1}+\dfrac{1}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{1}{c^2+1}+\dfrac{c}{a^2+1}+\dfrac{1}{a^2+1}\)
Xét \(\dfrac{a}{b^2+1}+\dfrac{b}{c^2+1}+\dfrac{c}{a^2+1}=a-\dfrac{ab^2}{b^2+1}+b-\dfrac{bc^2}{c^2+1}+c-\dfrac{a^2c}{a^2+1}\)
Xét \(\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}+\dfrac{1}{a^2+1}=1-\dfrac{b^2}{b^2+1}+1-\dfrac{c^2}{c^2+1}+1-\dfrac{a^2}{a^2+1}\)
\(\Rightarrow P=6-\left(\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}+\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\right)\)
Áp dụng bđt Cauchy cho 2 số thực dương ta có \(b^2+1\ge2b\Rightarrow\dfrac{ab^2}{b^2+1}\le\dfrac{ab^2}{2b}=\dfrac{ab}{2}\)
\(\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{ab+bc+ac}{2}\)
Theo hệ quả của bđt Cauchy ta có \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
\(\Rightarrow3\ge ab+bc+ac\) \(\Rightarrow\dfrac{3}{2}\ge\dfrac{ab+bc+ac}{2}\Rightarrow\dfrac{ab^2}{b^2+1}+\dfrac{bc^2}{c^2+1}+\dfrac{ca^2}{a^2+1}\le\dfrac{3}{2}\)
Áp dụng bđt Cauchy cho 2 số thực dương ta có \(a^2+1\ge2a\Rightarrow\dfrac{a^2}{a^2+1}\le\dfrac{a^2}{2a}=\dfrac{a}{2}\)
\(\Rightarrow\dfrac{a^2}{a^2+1}+\dfrac{b^2}{b^2+1}+\dfrac{c^2}{c^2+1}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\)
\(\Rightarrow P\ge6-\left(\dfrac{3}{2}+\dfrac{3}{2}\right)=3\left(đpcm\right)\)
Dấu ''='' xảy ra khi \(a=b=c=1\)
Bài 1 : Ta có : \(\dfrac{a}{a+1}+\dfrac{b}{b+1}+\dfrac{c}{c+1}=\dfrac{a^2}{a^2+a}+\dfrac{b^2}{b^2+b}+\dfrac{c^2}{c^2+c}\)
Theo BĐT CÔ - SI dưới dạng engel ta có :
\(\dfrac{a^2}{a^2+a}+\dfrac{b^2}{b^2+b}+\dfrac{c^2}{c^2+c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+\left(a+b+c\right)}=\dfrac{1}{a^2+b^2+c^2+1}\le\dfrac{1}{\dfrac{1}{a+b+c}+1}=\dfrac{1}{\dfrac{1}{3}+1}=\dfrac{4}{3}\)
Híc híc rối nùi luôn rồi , chắc sai ...
\(1.\) Gỉa sử : \(\sqrt{25-16}< \sqrt{25}-\sqrt{16}\)
\(\Leftrightarrow3< 1\) ( Vô lý )
\(\Rightarrow\sqrt{25-16}>\sqrt{25}-\sqrt{16}\)
\(2.\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< a-b\)
\(\Leftrightarrow a-2\sqrt{ab}+b< a-b\)
\(\Leftrightarrow2b-2\sqrt{ab}< 0\)
\(\Leftrightarrow2\left(b-\sqrt{ab}\right)< 0\)
Ta có :\(a>b\Leftrightarrow ab>b^2\Leftrightarrow\sqrt{ab}>b\)
\(\RightarrowĐpcm.\)
\(2a.\) Áp dụng BĐT Cauchy , ta có :
\(a+b\ge2\sqrt{ab}\left(a;b\ge0\right)\)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(b.\) Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\left(x,y>0\right)\left(1\right)\)
\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\left(y,z>0\right)\left(2\right)\)
\(\dfrac{1}{x}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{xz}}\left(x,z>0\right)\left(3\right)\)
Cộng từng vế của ( 1 ; 2 ; 3 ) , ta được :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\)
\(3a.\sqrt{x-4}=a\left(a\in R\right)\left(x\ge4;a\ge0\right)\)
\(\Leftrightarrow x-4=a^2\)
\(\Leftrightarrow x=a^2+4\left(TM\right)\)
\(3b.\sqrt{x+4}=x+2\left(x\ge-2\right)\)
\(\Leftrightarrow x+4=x^2+4x+4\)
\(\Leftrightarrow x^2+3x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=-3\left(KTM\right)\end{matrix}\right.\)
KL....
Lời giải:
a)
Sử dụng pp biến đổi tương đương:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)
\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)
Ta có đpcm.
b) Áp dụng công thức của phần a ta có:
\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)
Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)
Do đó:
\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)
Cộng theo vế các BĐT trên thu được:
\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)
\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
troi oi bai nay kho wwa ><
\(\dfrac{a+1}{b^2+1}=a+1-\dfrac{ab^2+b^2}{b^2+1}\) minh hong biet phai lam gi tiep theo dau