Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^3}{1+b}+\dfrac{1+b}{4}+\dfrac{1}{2}\ge3\sqrt[3]{\dfrac{a^3\left(1+b\right)}{8\left(a+b\right)}}=\dfrac{3a}{2}\)
\(\dfrac{b^3}{1+c}+\dfrac{1+c}{4}+\dfrac{1}{2}\ge\dfrac{3b}{2}\) ; \(\dfrac{c^3}{1+a}+\dfrac{1+a}{4}+\dfrac{1}{2}\ge\dfrac{3c}{2}\)
\(\Rightarrow VT+\dfrac{a+b+c}{4}+\dfrac{9}{4}\ge\dfrac{3}{2}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\dfrac{5}{4}\left(a+b+c\right)-\dfrac{9}{4}\ge\dfrac{5}{4}.3\sqrt[3]{abc}-\dfrac{9}{4}=\dfrac{3}{2}\)
Do \(abc=1\Rightarrow\) đặt \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)
\(VT=\dfrac{xz}{y\left(x+z\right)}+\dfrac{xy}{z\left(x+y\right)}+\dfrac{yz}{x\left(y+z\right)}=\dfrac{\left(xz\right)^2}{xyz\left(x+z\right)}+\dfrac{\left(xy\right)^2}{xyz\left(x+y\right)}+\dfrac{\left(yz\right)^2}{xyz\left(y+z\right)}\)
\(VT\ge\dfrac{\left(xy+yz+zx\right)^2}{2xyz\left(x+y+z\right)}\ge\dfrac{3xyz\left(x+y+z\right)}{2xyz\left(x+y+z\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c=1\)
Lời giải:
Xét:
$\frac{a}{a^2+1}-\left(\frac{16}{25}-\frac{3}{25}a\right)=\frac{(a-2)^2(3a-4)}{25(a^2+1)}\geq 0$ với mọi $a\geq \frac{4}{3}$
$\Rightarrow \frac{a}{a^2+1}\geq \frac{16}{25}-\frac{3}{25}a$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế, suy ra:
$A\geq \frac{48}{25}-\frac{3}{25}(a+b+c)=\frac{6}{5}$
Vậy $A_{\min}=\frac{6}{5}$.
Giá trị này đạt tại $a=b=c=2$
có cách nào không gượng ép như thế này không ạ
kiểu như phân tích chọn điểm rơi để tìm cách thêm bớt ấy ạ
\(\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}\ge1\Leftrightarrow\dfrac{2}{a+2}+\dfrac{2}{b+2}+\dfrac{2}{c+2}\ge2\)
\(\Leftrightarrow\dfrac{a}{a+2}+\dfrac{b}{b+2}+\dfrac{c}{c+2}\le1\)
\(\Rightarrow1\ge\dfrac{a^2}{a^2+2a}+\dfrac{b^2}{b^2+2b}+\dfrac{c^2}{c^2+2c}\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2\left(a+b+c\right)}\)
\(\Rightarrow a^2+b^2+c^2+2\left(a+b+c\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Rightarrow\) đpcm
a;b;c phải là số dương chứ bạn?
\(\dfrac{a+1}{b^2+1}=a+1-\dfrac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\dfrac{b^2\left(a+1\right)}{2b}=a+1-\dfrac{b+ab}{2}\)
Tương tự:
\(\dfrac{b+1}{c^2+1}\ge b+1-\dfrac{c+bc}{2}\) ; \(\dfrac{c+1}{a^2+1}\ge c+1-\dfrac{a+ca}{2}\)
Cộng vế với vế:
\(VT\ge a+b+c+3-\dfrac{1}{2}\left(a+b+c+ab+bc+ca\right)\)
\(VT\ge6-\dfrac{3}{2}-\dfrac{1}{2}\left(ab+bc+ca\right)\ge\dfrac{9}{2}-\dfrac{1}{6}\left(a+b+c\right)^2=3=a+b+c\)
\(\Rightarrow VT\ge a+b+c\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(ab+bc+ac=3\)
Ta có:
\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\) ( đúng với mọi \(ab\ge1\))
Giả sử:\(ab\ge1\)
\(\Rightarrow\dfrac{2}{ab+1}+\dfrac{1}{c^2+1}\ge\dfrac{2c^2+2+ab+1}{\left(ab+1\right)\left(c^2+1\right)}=\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\)
Giả sử: \(\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\dfrac{3}{2}\)(đúng)
\(\Leftrightarrow2\left(2c^2+ab+3\right)\ge3\left(ab+1\right)\left(c^2+1\right)\)
\(\Leftrightarrow4c^2+2ab+6\ge3\left(abc^2+ab+c^2+1\right)\)
\(\Leftrightarrow4c^2+2ab+6\ge3abc^2+3ab+3c^2+3\)
\(\Leftrightarrow c^2-ab-3abc^2+3\ge0\)
\(\Leftrightarrow c^2-ab-3abc^2+ab+ac+bc\ge0\) ( vì \(ab+ac+bc=3\) )
\(\Leftrightarrow c^2+ac+bc-3abc^2\ge0\)
\(\Leftrightarrow c+a+b-3abc\ge0\)
\(\Leftrightarrow c+a+b\ge3abc\)
Ta có:
\(3\left(c+a+b\right)=\left(ab+ac+bc\right)\left(c+a+b\right)\) ( vì \(ab+ac+bc=3\) )
Áp dụng BĐT AM-GM, ta có:
\(\left(ab+ac+bc\right)\left(c+a+b\right)\ge9abc\)
\(\Rightarrow a+b+c\ge3abc\)
\(\Rightarrow\) \(\dfrac{2c^2+ab+3}{\left(ab+1\right)\left(c^2+1\right)}\ge\dfrac{3}{2}\) ( luôn đúng )
\(\Rightarrow\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}+\dfrac{1}{c^2+1}\ge\dfrac{3}{2}\) ( đfcm )
Dấu "=" xảy ra khi \(a=b=c=1\)
Đề kiểu gì v bạn?