Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: abc > 0 nên xảy ra 2 trường hợp hoặc là a,b,c đều dương (bài toán được chứng minh) hoặc trong 3 số sẽ có 2 số âm 1 số dương.
Không mất tính tổng quát ta giả sử: \(\hept{\begin{cases}a< 0\\b< 0\\c>0\end{cases}}\)
Ta đặt: \(\hept{\begin{cases}a=-x\left(x>0\right)\\b=-y\left(y>0\right)\end{cases}}\) thì theo đề bài ta có
\(\hept{\begin{cases}c-x-y>0\\xy-cx-xy>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}c>x+y\left(1\right)\\xy>cx+cy\left(2\right)\end{cases}}\)
Từ (1) ta có thể suy ra được: \(\hept{\begin{cases}cx>x^2+xy\\cy>y^2+xy\end{cases}}\)
\(\Rightarrow cx+cy>x^2+2xy+y^2\left(3\right)\)
Từ (2) và (3) ta có: \(xy>cx+cy>x^2+2xy+y^2\)
\(\Leftrightarrow0>x^2+xy+y^2\) (sai)
Từ đây ta thấy rằng chỉ có trường hợp \(\hept{\begin{cases}a>0\\b>0\\c>0\end{cases}}\) là đúng
Rõ rảng abc > 0 nên a,b,c phải khác 0
+ Giả sử trong a,b,c có 1 số bé hơn 0,vì vai trò a,b,c như nhau giả sử là a ta có
a < 0 ,do abc > 0 => bc < 0 do a(b + c) + bc > 0 => a(b + c) > -bc hay a(b + c) > 0 do a < 0 => b + c < 0
=> a + b + c < 0 mâu thuẫn với 1 giả thiết a + b + c > 0
+ Giả sử có 2 số nhỏ hơn không,tương tự giả sử là a và b ta có
a + b + c > 0 => c > 0 => abc < 0 mâu thuẫn
+ còn a,b,c đều nhỏ hơn 0 thì hiển nhiên a + b + c < 0 mâu thuẫn với a + b + c > 0
Vậy bất buộc cả 3 a,b,c đều phải đồng thời lớn hơn 0
+TH1: có 1 số < 0 là a, 2 số lớn hơn 0 là b,c
=> bc > 0 mà a < 0
=> abc < 0 (trái giả thiết) => không tồn tại trường hợp này.
+TH2: 2 số <0 là b,c ; 1 số lớn hơn 0 là a.
=> bc > 0; b+c < 0; a > 0
a+b+c > 0 => a > -(b+c) > 0 => a.(b+c) < -(b+c).(b+c) (nhân cả 2 vế với 1 số < 0 là (b+c) nên đổi chiều)
=> ab+bc+ca=a(b+c) + bc < -(b+c)2 + bc = -(b2+c2+bc) < 0 (do b2,c2,bc > 0) => trái giả thiết => không tồn tại trường hợp này.
+TH3: a,b,c < 0
=>abc < 0 => trái giả thiết => không tồn tại trường hợp này.
Vậy: a,b,c > 0