Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(A=\sqrt{a^2+\frac{1}{a^2}}+\sqrt{b^2+\frac{1}{b^2}}+\sqrt{c^2+\frac{1}{c^2}}\), khi đó ta được:
\(A^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)
\(+2\cdot\sqrt{\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)}+2\cdot\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)}+2\cdot\sqrt{\left(c^2+\frac{1}{c^2}\right)\left(a^2+\frac{1}{a^2}\right)}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có:
\(\sqrt{\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)}\ge\sqrt{\left(ab+\frac{1}{ab}\right)^2}=ab+\frac{1}{ab}\)
\(\sqrt{\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)}\ge\sqrt{\left(bc-\frac{1}{bc}\right)^2}=bc+\frac{1}{bc}\)
\(\sqrt{\left(c^2+\frac{1}{c^2}\right)\left(a^2+\frac{1}{a^2}\right)}\ge\sqrt{\left(ca+\frac{1}{ca}\right)^2}=ca+\frac{1}{ca}\)
Do đó ta có:
\(A^2\ge a^2+b^2+c^2+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(ab+bc+ca+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(=\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2=82\)
Hay \(A\ge\sqrt{82}\), vậy bất đẳng thức được chứng minh.
Theo bất đẳng thức AM - GM ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{\left(a+1\right)b^2}{b^2+1}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)
Làm tương tự có hai bất đẳng thức với \(\frac{b+1}{c^2+1}\)và \(\frac{c+1}{a^2+1}\)sau đó cộng lại ta có:
\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\left(a+1-\frac{ab+b}{2}\right)+\left(b+1-\frac{bc+c}{2}\right)+\left(c+1-\frac{ca+a}{2}\right)\)
\(=3+\frac{a+b+c-ab-bc-ca}{2}\).
Nếu ta chứng minh được \(a+b+c-ab-bc-ca\ge0\)ta sẽ có đpcm.
Ta có: \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a+b+c\ge ab+bc+ca\).
Do đó ta có đpcm.
\(abc+a+c=b\Leftrightarrow ac+\frac{a}{b}+\frac{c}{b}=1\)
\(\Rightarrow\) tồn tại 1 tam giác nhọn ABC sao cho: \(\left\{{}\begin{matrix}a=tan\frac{A}{2}\\\frac{1}{b}=tan\frac{B}{2}\\c=tan\frac{C}{2}\end{matrix}\right.\)
Đặt vế trái của biểu thức là P, ta có:
\(P=\frac{2}{1+tan^2\frac{A}{2}}-\frac{2}{1+\frac{1}{tan^2\frac{B}{2}}}+\frac{3}{1+tan^2\frac{C}{2}}=2cos^2\frac{A}{2}-2sin^2\frac{B}{2}+3cos^2\frac{C}{2}\)
\(=cosA+cosB+3cos^2\frac{C}{2}=2cos\frac{A+B}{2}cos\frac{A-B}{2}+3cos^2\frac{C}{2}\)
\(=2sin\frac{C}{2}.cos\frac{A-B}{2}-3sin^2\frac{C}{2}-\frac{1}{3}cos^2\frac{A-B}{2}+\frac{1}{3}cos^2\frac{A-B}{2}+3\)
\(=-3\left(sin\frac{C}{2}-\frac{1}{3}cos\frac{A-B}{2}\right)^2+\frac{1}{3}cos^2\frac{A-B}{2}+3\le0+\frac{1}{3}+3=\frac{10}{3}\)
Lời giải:
\(P=\frac{a^3}{b^2+3}+\frac{b^3}{c^2+3}+\frac{c^3}{a^2+3}=\frac{a^3}{b^2+ab+bc+ac}+\frac{b^3}{c^2+ab+bc+ac}+\frac{c^3}{a^2+ab+bc+ac}\)
\(=\frac{a^3}{(b+a)(b+c)}+\frac{b^3}{(c+a)(c+b)}+\frac{c^3}{(a+b)(a+c)}\)
Áp dụng BĐT Cô-si cho các số dương:
\(\frac{a^3}{(b+a)(b+c)}+\frac{b+a}{8}+\frac{b+c}{8}\geq 3\sqrt[3]{\frac{a^3}{8.8}}=\frac{3a}{4}\)
\(\frac{b^3}{(c+a)(c+b)}+\frac{c+a}{8}+\frac{c+b}{8}\geq \frac{3b}{4}\)
\(\frac{c^3}{(a+b)(a+c)}+\frac{a+b}{8}+\frac{a+c}{8}\geq \frac{3c}{4}\)
Cộng theo vế và rút gọn:\(\Rightarrow P\geq \frac{a+b+c}{4}\)
Cũng theo BĐT Cô-si ta có hệ quả quen thuộc
\(a^2+b^2+c^2\geq ab+bc+ac\)
\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)=9\Rightarrow a+b+c\geq 3\)
Do đó \(P\geq \frac{3}{4}\)
Vậy $P_{\min}=\frac{3}{4}$ khi $a=b=c=1$
\(a,b,c\)theo thứ tự lập thành cấp số cộng nên \(a-b=b-c\).
\(d\)là công sai của cấp số cộng.
Nếu \(d=0\)dễ dàng thấy đẳng thức cần chứng minh là đúng.
Nếu \(d\ne0\):
\(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{\sqrt{a}-\sqrt{b}}{a-b}+\frac{\sqrt{b}-\sqrt{c}}{b-c}=\frac{\sqrt{a}-\sqrt{c}}{a-b}\)
\(=\frac{a-c}{\left(a-b\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2}{\sqrt{a}+\sqrt{c}}\)
<br class="Apple-interchange-newline"><div></div>a,b,ctheo thứ tự lập thành cấp số cộng nên a−b=b−c.
dlà công sai của cấp số cộng.
Nếu d=0dễ dàng thấy đẳng thức cần chứng minh là đúng.
Nếu d≠0:
1√a+√b +1√b+√c =√a−√ba−b +√b−√cb−c =√a−√ca−b
=a−c(a−b)(√a+√c) =2√a+√c
Lời giải khác:
Theo BĐT AM-GM:
\(\text{VT}=\sum \frac{\sqrt{2(b^2+c^2)-a^2}}{a}\geq \sum \frac{\sqrt{(b+c)^2-a^2}}{a}=\sum \frac{\sqrt{a+b+c}.\sqrt{b+c-a}}{a}\)
\(=\sum \frac{\sqrt{a+b+c}.(b+c-a)}{\sqrt{a^2(b+c-a)}}\)
Theo BĐT AM-GM:
$a^2(b+c-a)\leq \left(\frac{a+b+c}{3}\right)^3$
\(\Rightarrow \text{VT}\geq 3\sqrt{3}\sum \frac{\sqrt{a+b+c}(b+c-a)}{\sqrt{(a+b+c)^3}}=3\sqrt{3}.\sum \frac{b+c-a}{a+b+c}=3\sqrt{3}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c$
Chuẩn hóa \(a+b+c=3\)
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên ta cũng suy ra \(0< a;b;c< \frac{3}{2}\)
Đặt vế trái là P, ta có:
\(P=\sum\frac{\sqrt{2\left(b^2+c^2\right)-a^2}}{a}\ge\sum\frac{\sqrt{\left(b+c\right)^2-a^2}}{a}=\sum\frac{\sqrt{\left(a+b+c\right)\left(b+c-a\right)}}{a}=\sqrt{3}\left(\frac{\sqrt{3-2a}}{a}+\frac{\sqrt{3-2b}}{b}+\frac{\sqrt{3-2c}}{c}\right)\)
Ta có đánh giá: \(\frac{\sqrt{3-2a}}{a}\ge3-2a\) với mọi \(a\in\left(0;\frac{3}{2}\right)\)
Thật vậy, BĐT \(\Leftrightarrow a\sqrt{3-2a}\le1\)
\(\Leftrightarrow1-a^2\left(3-2a\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2\left(2a+1\right)\ge0\) (luôn đúng)
Tương tự \(\frac{\sqrt{3-2b}}{b}\ge3-2b\) ; \(\frac{\sqrt{3-2c}}{c}\ge3-2c\)
\(\Rightarrow P\ge\sqrt{3}\left[9-2\left(a+b+c\right)\right]=3\sqrt{3}\) (đpcm)
\(a+b+c=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\ge3\)
\(P\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3ab+3bc+3ca}+\sqrt{\frac{1}{3}\left(a+b+c\right)^2}\)
\(P\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+a+b+c}+\frac{1}{\sqrt{3}}\left(a+b+c\right)\)
\(P\ge1-\frac{1}{a+b+c+1}+\frac{1}{\sqrt{3}}\left(a+b+c\right)\ge1-\frac{1}{3+1}+\frac{1}{\sqrt{3}}.3=\frac{3+4\sqrt{3}}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)