Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐKĐB \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
\(\Leftrightarrow 1-\frac{a}{a+1}+1-\frac{b}{b+1}+1-\frac{c}{c+1}=2\)
\(\Leftrightarrow \frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\)
-----------------------------------------------------------
Ta có: \(\text{VT}=1-\frac{8a^2}{8a^2+1}+1-\frac{8b^2}{8b^2+1}+1-\frac{8c^2}{8c^2+1}\)
\(\Leftrightarrow \text{VT}=3-\underbrace{\left(\frac{8a^2}{8a^2+1}+\frac{8b^2}{8b^2+1}+\frac{8c^2}{8c^2+1}\right)}_{M}\) (1)
Áp dụng BĐT AM-GM:
\(4a^2+1\geq 4a\Rightarrow 8a^2+1=4a^2+(4a^2+1)\geq 4a^2+4a\)
\(\Rightarrow \frac{8a^2}{8a^2+1}\leq \frac{8a^2}{4a^2+4a}=\frac{2a}{a+1}\)
Thực hiện tương tự cho các phân thức còn lại và cộng theo vế:
\(\Rightarrow M\leq 2\left(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\right)=2\) (2)
Từ \((1);(2)\Rightarrow \text{VT}\geq 1\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}\)
a) Câu này biến đổi tương đương
b)
Ta có : \(a^2\left(a-1\right)^2\left(2+a\right)\ge0\Leftrightarrow a^2\left(3a-a^3-2\right)\le0\)
\(\Leftrightarrow3a^3+6-a^5-2a^2\le6\Leftrightarrow\left(3-a^2\right)\left(a^3+2\right)\le6\)
\(\Leftrightarrow\dfrac{1}{a^3+2}\ge\dfrac{3-a^2}{6}\)
Tương tự với b , c ta có :
\(\sum\left(\dfrac{1}{a^3+2}\right)\ge\sum\left(\dfrac{3-a^2}{6}\right)=\dfrac{9-\sum a^2}{6}=1\)
Bạn xem lời giải tại đây:
https://hoc24.vn/cau-hoi/cho-abcge0a2b2c21cmr-dfracc1abdfracb1acdfraca1bcge1.1019784090594
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Lời giải:
a)
Sử dụng pp biến đổi tương đương:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\Leftrightarrow \frac{a^2+b^2+2}{(a^2+1)(b^2+1)}\geq \frac{2}{ab+1}\)
\(\Leftrightarrow (ab+1)(a^2+b^2+2)\geq 2(a^2b^2+a^2+b^2+1)\)
\(\Leftrightarrow ab(a^2+b^2)+2ab\geq 2a^2b^2+a^2+b^2\)
\(\Leftrightarrow ab(a^2+b^2-2ab)-(a^2+b^2-2ab)\geq 0\)
\(\Leftrightarrow ab(a-b)^2-(a-b)^2\geq 0\)
\(\Leftrightarrow (ab-1)(a-b)^2\geq 0\) (luôn đúng với mọi $ab\geq 1$)
Ta có đpcm.
b) Áp dụng công thức của phần a ta có:
\(\frac{1}{a^4+1}+\frac{1}{b^4+1}\geq \frac{2}{1+(ab)^2}\)
Tiếp tục áp dụng công thức phần a: \(\frac{1}{1+(ab)^2}+\frac{1}{1+b^4}\geq \frac{2}{1+ab^3}\)
Do đó:
\(\frac{1}{a^4+1}+\frac{3}{b^4+1}\geq \frac{4}{1+ab^3}\)
Hoàn toàn tương tự: \(\frac{1}{b^4+1}+\frac{3}{c^4+1}\geq \frac{4}{1+bc^3}; \frac{1}{c^4+1}+\frac{3}{a^4+1}\geq \frac{4}{1+ca^3}\)
Cộng theo vế các BĐT trên thu được:
\(4\left(\frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\right)\geq 4\left(\frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\right)\)
\(\Leftrightarrow \frac{1}{a^4+1}+\frac{1}{b^4+1}+\frac{1}{c^4+1}\geq \frac{1}{1+ab^3}+\frac{1}{1+bc^3}+\frac{1}{1+ca^3}\)
Ta có đpcm
Dấu bằng xảy ra khi $a=b=c=1$
\(\dfrac{1}{a^2+a+1}\ge\dfrac{1}{a^2+\dfrac{a^2+1}{2}+1}=\dfrac{2}{3}.\dfrac{1}{a^2+1}=\dfrac{2}{3}\left(1-\dfrac{a^2}{a^2+1}\right)\ge\dfrac{2}{3}\left(1-\dfrac{a}{2}\right)\)
Tương tự và cộng lại: \(VT\ge\dfrac{2}{3}\left(3-\dfrac{a+b+c}{2}\right)=\dfrac{2}{3}.\dfrac{3}{2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)