Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương thẳng cô-si 3 số cho giả thiết và cái gt đi,t dùng đt ko làm đc
\(a^3+b^3+c^3=3abc\)
<=> \(a^3+b^3+c^3-3abc=0\)
<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
đến đây ez tự làm nốt nhé, ko ra ib mk
Ta có: \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)
\(\Leftrightarrow\)\(a\left(a-b\right)-b\left(a-b+c-a\right)+c\left(c-a\right)=0\)
\(\Leftrightarrow\)\(a\left(a-b\right)-b\left(a-b\right)-b\left(c-a\right)+c\left(c-a\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(c-a\right)\left(c-b\right)=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a-b=0\\\left(c-a\right)\left(c-b\right)=0\end{cases}}\)
\(\Leftrightarrow\)\(a=b=c\)
Thế a = b = c vào A ta được:
\(A=3^3-3a^3+3a^2-3a+5\)
\(A=3\left(a^2-a+\frac{5}{3}\right)\)
\(A=3\left[\left(a-\frac{1}{2}\right)^2+\frac{17}{12}\right]\)
\(A=3\left(a-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)
Vậy GTNN của A là 17/4 khi a = b = c = 1/2
Ta có: \(a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=0\)
<=> \(a^2+b^2+c^2-ac-bc-ab=0\Leftrightarrow2a^2+2b^2+2c^2-2ac-2bc-2ab=0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
<=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
<=> \(\left(a-b\right)^2=0,\left(b-c\right)^2=0,\left(a-c\right)^2=0\)
<=> a=b=c
Thế vào ta có biểu thức:
A=\(3a^3-3a^3+3a^2-3a+5=3\left(a^2-a+\frac{5}{3}\right)=3\left(a-\frac{1}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)
Giá trị nhỏ nhất của biểu thức A=17/4
Dấu bằng xảy ra khi a=b=c=1/2
Bài 1:Cách thông thường nhất là sos hoặc cauchy-Schwarz nhưng thôi ko làm:v Thử cách này cho nó mới dù rằng ko chắc
Giả sử \(a\ge b\ge c\Rightarrow c\le1\Rightarrow a+b=3-c\ge2\) và \(a\ge1\)
Ta có \(LHS=a^3.a+b^3.b+c^3.c\)
\(=\left(a^3-b^3\right)a+\left(b^3-c^3\right)\left(a+b\right)+c^3\left(a+b+c\right)\)
\(\ge\left(a^3-b^3\right).1+\left(b^3-c^3\right).2+3c^3\)
\(=a^3+b^3+c^3=RHS\)
Đẳng thức xảy ra khi a = b = c = 1
Cho a,b,c>0 thỏa mãn a+b+c=3 Tìm GTNN của
\(P=\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\)
Ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{\left(a+1\right)b^2}{b^2+1}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\)
Một cách tương ứng khi đó:
\(\Rightarrow P=a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}\)
\(=3+3-\frac{\frac{3^2}{3}+3}{2}=3\)
Đẳng thức xảy ra tại a=b=c=1
sử dụng bđt Cosi ta có:
\(\frac{a+1}{b^2+1}=a+1-\frac{b^2\left(a-1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{b+ab}{2}\left(1\right)\)
chứng minh tương tự ta cũng được \(\hept{\begin{cases}\frac{b+1}{c^2+1}\ge b+1-\frac{c+bc}{2}\left(2\right)\\\frac{c+1}{a^2+1}\ge a+1-\frac{a+ca}{2}\left(3\right)\end{cases}}\)
từ (1)(2)(3) => \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}\)
mặt khác a2+b2+c2>= ab+bc+ca hay 3(ab+bc+ca) =< (a+b+c)2=9
do đó \(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge\frac{a+b+c}{2}+3-\frac{ab+bc+ca}{2}=\frac{3}{2}+3-\frac{9}{6}=3\)
dấu "=" xảy ra khi a=b=c=1
Nhân cả 2 vế với a+b+c
Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0
dễ rồi nhé
b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)
=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)
=>Pmax=3/4 <=> x=y=z=1/3