Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Trả lời :
\(VT=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3c}{a+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}\)
Tách VT = A + B và xét :
\(A=\frac{3a}{1+b^2}+\frac{3b}{1+c^2}+\frac{3b}{1+a^2}=\)\(\sum\)\(\left(3a-\frac{3ab^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(3a-\frac{3ab}{2}\right)\)
\(B=\frac{1}{1+b^2}+\frac{1}{1+c^2}+\frac{1}{1+a^2}=\)\(\sum\)\(\left(1-\frac{b^2}{1+b^2}\right)\ge\)\(\sum\)\(\left(1-\frac{b}{2}\right)\)
\(\Rightarrow VT=A+B=3+\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\)\(\sum\)\(ab=\frac{5}{2}\left(a+b+c\right)-\frac{3}{2}\ge\frac{15}{2}-\frac{3}{2}=6\)
( Do \(a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}=3\))
Dấu ''='' xảy ra khi a = b = c = 1
Tham khảo nhé ^^
Ta có: \(\frac{1+3a}{1+b^2}=\left(1+3a\right).\frac{1}{1+b^2}=\left(1+3a\right)\left(1-\frac{b^2}{1+b^2}\right)\)
\(\ge\left(1+3a\right)\left(1-\frac{b^2}{2b}\right)=\left(1+3a\right)\left(1-\frac{b}{2}\right)\)
\(=3a+1-\frac{b}{2}-\frac{3ab}{2}\)(1)
Tương tự ta có: \(\frac{1+3b}{1+c^2}=3b+1-\frac{c}{2}-\frac{3bc}{2}\)(2); \(\frac{1+3c}{1+a^2}=3c+1-\frac{a}{2}-\frac{3ca}{2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)\(\ge3\left(a+b+c\right)-\frac{a+b+c}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)
\(=\frac{5\left(a+b+c\right)}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)
\(\ge\frac{5.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{3.3}{2}+3=\frac{15}{2}-\frac{9}{2}+3=6\)
Đẳng thức xảy ra khi a = b = c = 1
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
Tìm GTNN a: $F= 14(a^2+b^2+c^2) + \dfrac{ab+bc+ca}{a^2b+b^2c+c^2a}$ | HOCMAI Forum - Cộng đồng học sinh Việt Nam
Ta có:
\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(\Leftrightarrow\left(a^2b+b^2c+c^2a\right)^2\le\left(a^2+b^2+c^2\right)\left(a^2b+b^2c+c^2a\right)\le\frac{\left(a^2+b^2+c^2\right)^3}{3}\le\left(a^2+b^2+c^2\right)^4\)
\(\Rightarrow a^2b+b^2c+c^2a\le\left(a^2+b^2+c^2\right)^2\)
Ta lại có:
\(ab+bc+ca=\frac{1-\left(a^2+b^2+c^2\right)^2}{2}\)
Làm tiếp.
Ta có :
\(\frac{a^2}{a+b}=\frac{a\left(a+b\right)-ab}{a+b}=a-\frac{ab}{a+b}\text{≥}a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)(1)
Tương tự : \(\hept{\begin{cases}\frac{b^2}{b+c}\text{≥}b-\frac{\sqrt{bc}}{2}\left(2\right)\\\frac{c^2}{c+a}\text{≥}c-\frac{\sqrt{ac}}{2}\left(3\right)\end{cases}}\)
Cộng vế với vế của (1);(2)(;(3) lại ta được :
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{a+c}\text{≥}a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ac}}{2}\)
\(\Leftrightarrow A\text{≥}\left(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ab}\right)+\left(\frac{\sqrt{ab}}{2}+\frac{\sqrt{bc}}{2}+\frac{\sqrt{ac}}{2}\right)\)
Lại lại có : \(a+b+c\text{≥}\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\) (tự chứng minh)
\(\Rightarrow a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ab}\text{≥}0\)
Nên \(A\text{≥}\frac{1}{2}\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)=\frac{1}{2}\)có GTNN là 1/2
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
$ab+bc+ca=3$. CMR: $\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\geqslant \frac{3}{2}$ - Bất đẳng thức và cực trị - Diễn đàn Toán học
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{3bc}+\frac{b}{2ca}+\frac{\sqrt{6}c^2}{6}\ge\frac{\sqrt{6}}{2}\)
\(\frac{3b}{2ca}+\frac{3c}{ab}+\frac{\sqrt{6}a^2}{6}\ge\frac{3\sqrt{6}}{2}\)
\(\frac{2a}{3bc}+\frac{2c}{ab}+\frac{\sqrt{6}b^2}{6}\ge\sqrt{6}\)
Cộng theo vế ta có: \(P\ge2\sqrt{6}\).
Dấu "=" khi \(\hept{\begin{cases}a=\sqrt{3}\\b=\sqrt{2}\\c=1\end{cases}}\)