\(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Leftrightarrow\left(\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\right).\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a}{\left(a-b\right)\left(b-c\right)}+\frac{a}{\left(c-a\right)\left(b-c\right)}+\frac{b}{\left(c-a\right)\left(a-b\right)}+\frac{b}{\left(c-a\right)\left(b-c\right)}+\frac{c}{\left(a-b\right)\left(b-c\right)}+\frac{c}{\left(a-b\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a\left(c-a\right)+a.\left(a-b\right)+b.\left(a-b\right)+b.\left(b-c\right)+c.\left(b-c\right)+c.\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{ac-a^2+ab-ac+ba-b^2+b^2-bc+bc-c^2+c^2-ac}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}+0=0\)

\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(a-c\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

                                    đpcm

6 tháng 11 2016

\(a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+c^2+2bc\Leftrightarrow a^2-b^2-c^2=2bc\)

Tương tự : \(b^2-a^2-c^2=2ac\) ; \(c^2-a^2-b^2=2ab\)

Ta có : \(T=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{a^2}{2bc}+\frac{b^2}{2ca}+\frac{c^2}{2ab}\)

\(=\frac{1}{2abc}\left(a^3+b^3+c^3\right)\)(1)

Ta sẽ chứng minh nếu a + b + c = 0 thì \(a^3+b^3+c^3=3abc\)

Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

= 0

=> \(a^3+b^3+c^3=3abc\) thay vào (1) được : 

\(T=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)

28 tháng 3 2019

Ta có

\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)

\(\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

Tương tự

\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ab-a^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(b-c\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=\frac{b^2-ab+ac-c^2+c^2-bc+ab-a^2+a^2-ac+bc-b^2}{\left(a-c\right)\left(b-a\right)\left(a-b\right)}\)

=0 ( ĐPCM)