K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

M = (a + b)(a2 - ab + b2) + c(a2 + b2) - abc 

= - c(a2 - ab + b2) + c(a2 - ab + b2) = 0

7 tháng 5 2015

 

bạn chép lại đề nha

=a3+a^2c+a^2b-a^2b-abc+b^2c+b^3+b^2a-b^2a

=a^2(a+b+c)-a^2b-abc+b^2(a+b+c)-b^2a

=     -a^2b-abc-b^2a

=     -ab(a+b+c)=-ab 0 =0

vậy đa thức này bằng 0

 

14 tháng 10 2017

dfgdfg

5 tháng 8 2019

\(a+b+c=0\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)

\(a^3+b^3+a^2c+b^2c\)

\(=a^2\left(a+c\right)+b^2\left(b+c\right)\)

\(=-ba^2-ab^2\)

\(=-ab\left(a+b\right)\)

\(=-ab\cdot\left(-c\right)\)

\(=abc\) (đpcm)

Câu 1. Chứng minh √7 là số vô tỉ. Câu 2. a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2) b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2) Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2. Câu 4. a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P =...
Đọc tiếp

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:

b) Cho a, b, c > 0. Chứng minh rằng:

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

2
10 tháng 11 2017

Câu 4:

a) C/m tương đương

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) \(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) => luôn đúng

=> \(\dfrac{a+b}{2}\ge\sqrt{ab}\Rightarrowđpcm\)

b) \(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\)

Áp dụng BĐT: \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\)

+) \(\dfrac{bc}{a}+\dfrac{ba}{c}=b\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge2b\)

+) \(\dfrac{ca}{b}+\dfrac{cb}{a}=c\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2c\)

+) \(\dfrac{ab}{c}+\dfrac{ac}{b}=a\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge2a\)

Cộng vế vs vế ta có:

\(2\left(\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\ge a+b+c\Rightarrowđpcm\)

c) Áp dụng BĐT Cô-si cho 2 số không âm ta có:

\(12^2=\left(3a+5b\right)^2\ge4.3a.5b=60ab\)

=> \(ab\le\dfrac{12}{5}\)

Vậy GTLN của P là \(\dfrac{12}{5}\)

Dấu ''=" xảy ra khi \(3a=5b\), từ đó ta có hệ

\(\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)

11 tháng 11 2017

Câu 10:

a) \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2-2a^2-2b^2\le0\)

\(\Leftrightarrow-\left(a^2-b^2\right)\le0\) => luôn đúng

\(\Rightarrow\left(a+b\right)^2\le2a^2+2b^2\Rightarrowđpcm\)

CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI VÀ NĂNG KHIẾUCâu 1. Chứng minh √7 là số vô tỉ.Câu 2.a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.Câu 4.a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: b) Cho a, b, c > 0. Chứng minh rằng: c) Cho a, b > 0 và 3a + 5b = 12....
Đọc tiếp

CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI VÀ NĂNG KHIẾU

Câu 1. Chứng minh √7 là số vô tỉ.

Câu 2.

a) Chứng minh: (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)

b) Chứng minh bất dẳng thức Bunhiacôpxki: (ac + bd)2 ≤ (a2 + b2)(c2 + d2)

Câu 3. Cho x + y = 2. Tìm giá trị nhỏ nhất của biểu thức: S = x2 + y2.

Câu 4.

a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: 

b) Cho a, b, c > 0. Chứng minh rằng: 

c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.

Câu 5. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức: M = a3 + b3.

Câu 6. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức: N = a + b.

Câu 7. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 8. Tìm liên hệ giữa các số a và b biết rằng: |a + b| > |a - b|

Câu 9.

a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

Câu 10. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

1
6 tháng 6 2016

Cau 9

(a+1)2=a2+2a+1  

Mà a2+1 >hoặc=4a[Bất đẳng thức Cô-si

Suy ra  2a+4a>hoac=4a

Vay.....

17 tháng 6 2017

Ta có:

(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca) = 1

=> 1 + 2(ab+ bc + ca) = 1 => ab + bc + ca = 0 (*)

(a + b + c)3 = a3 + b3 + c3 + 3(a + b)(b + c)(c + a) = 1

=> 1 + 3(a + b)(b + c)(c + a) = 1

=> (a + b)(b + c)(c + a) = 0

\(\Rightarrow\left[{}\begin{matrix}a+b=0\\b+c=0\\c+a=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

+) a = -b, thay vào (*) ta được: -b2 + bc - bc = 0

=> -b2 = 0 => b = 0 = a

=> abc = 0

TT cho 2 trường hợp còn lại ta cũng được abc = 0

7 tháng 4 2018
  • avt164921_60by60.jpgNhã Doanh9GP
  • d1.jpgPhạm Nguyễn Tất Đạt8GP
  • avt74271_60by60.jpgAkai Haruma7GP
  • avt164846_60by60.jpgnguyen thi vang5GP
  • avt134333_60by60.jpgNguyễn Thị Ngọc Thơ5GP
  • avt243309_60by60.jpgkuroba kaito4GP
  • avt203854_60by60.jpg Mashiro Shiina4GP
  • avt117189_60by60.jpgNguyễn Phạm Thanh Nga4GP
  • avt70420_60by60.jpglê thị hương giang3GP
  • avt57197_60by60.jpgAki Tsuki3GP
7 tháng 4 2018

bị rảnh ko Khùng Điên