Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bị lỗi hiển thị hay sao ấy, mình không nhìn thấy BĐT/ đẳng thức bạn muốn chứng minh.
Ta có : \(a+b^2⋮a^2b-1\) suy ra \(a+b^2=k\left(a^2b-1\right)\left(k\in N^{sao}\right)\)
\(\Leftrightarrow a+k=b\left(ka^2-b\right)\) hay \(mb=a+b\left(1\right)\) với \(m=ka^2-b\in Z^+\)
\(\Leftrightarrow m+b=ka^2\left(2\right)\)
Từ (1) và (2) suy ra \(mb-m-b+1=a+b-ka^2+1\)
\(\Leftrightarrow\left(m-1\right)\left(b-1\right)=\left(a+1\right)\left(k+1-ka\right)\left(3\right)\)
Vì \(m,b\in Z^+\Rightarrow\left(m-1\right)\left(b-1\right)\ge0\)
Do đó từ (3) suy ra \(\left(a+1\right)\left(k+1-ka\right)\ge0\)
Lại vì a > 0 nên suy ra \(k+1-ka\ge0\Rightarrow1\ge k\left(a-1\right)\)
Vì \(a-1\ge0,k>0\) nên \(1\ge k\left(a-1\right)\ge0\)
Mà \(k\left(a-1\right)\in Z\)
\(\Rightarrow k\left(a-1\right)=0\) hoặc \(k\left(a-1\right)=1\)
=> a=1 hoặc \(\left\{{}\begin{matrix}a=2\\k=1\end{matrix}\right.\)
- Với a=1 thay vào (3) ta có:(m-1)(b-1)=2
\(\Leftrightarrow\left\{{}\begin{matrix}b-1=1\\m-1=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}b-1=2\\m-1=1\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}b=2\\m=3\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}b=3\\m=2\end{matrix}\right.\)
TH b=2,m=3 suy ra 5=ka2 => a=1
TH b=3,m=2 => a=1
- Với a=1, k=1 thay vào (3): (m-1)(b-1)=0 <=> m=1 hoặc b=1
TH b=1 => a=2
TH m=1, từ (1) => a+k=b => b=3 => a=2
Vậy 4 cặp số (a;b) thỏa mãn là (1;2);(1;3);(2;3);(2;1)
\(+\frac{20b^3-\left(a^3+b^3\right)}{ab+5b^2}\le\frac{20b^3-ab\left(a+b\right)}{ab+5b^2}=\frac{b\left(20b^2-a^2-ab\right)}{b\left(a+5b\right)}=\frac{\left(4b-a\right)\left(a+5b\right)}{a+5b}=4b-a\)
( áp dụng bđt : \(a^3+b^3\ge ab\left(a+b\right)\) ( biến đổi tương đương là c/m đc ) )
Dấu "=" \(\Leftrightarrow a=b\)
+ Tương tự : \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b\) Dấu "=" <=> b = c
\(\frac{19a^3-c^3}{ac+5a^2}\le4a-c\) Dấu "=" \(\Leftrightarrow a=c\)
Cộng vế theo vế ta có đpcm. Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Chuẩn hóa: a+b+c=3k
\(\Rightarrow\)\(\dfrac{a}{k}+\dfrac{b}{k}+\dfrac{c}{k}=3\)
Đặt (\(\dfrac{a}{k};\dfrac{b}{k};\dfrac{c}{k}\))\(\Rightarrow\left(x;y;z\right)\);x+y+z=3
ĐPCM\(\Leftrightarrow\)\(\sum\dfrac{19y^3-x^3}{xy+5y^2}\le3\left(x+y+z\right)\)
Ta CM BĐT:
\(\dfrac{19y^3-x^3}{xy+5y^2}\le4y-x\Leftrightarrow-\dfrac{\left(y-x\right)^2\left(x+y\right)}{xy+5y^2}\le0\)(đúng)
CMTT\(\Rightarrow\)ĐPCM
trước hết ta cần chứng minh \(\frac{19b^3-a^3}{ab+5a^2}\le4b-a\left(1\right)\)
\(\left(1\right)\Leftrightarrow19b^3-a^3\le\left(4b-a\right)\left(ab+5a^2\right)\left(ab+5a^2>0\right)\)
phá ngoặc và biến đổi thành bất đẳng thức quen thuộc\(a^3+b^3\ge\left(a+b\right)ab\)với a,b dương
để cm bất đẳng thức này ta cần biến đổi tương đương thành\(\left(a+b\right)\left(a-b\right)^2\ge0\)(luôn đúng với mọi a,b)
chứng minh tương tự ta có VT\(\le\)4b-a+4c-b+4a-c\(=\)3(a+b+c)
để tham khảo thêm bạn có thể vào toán học tuổi trẻ số 440
Đề bài bị trái dấu bạn nhé
CM \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)
\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3ab^2\)
\(\Leftrightarrow b^3+a^3-ab^2-ba^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)đúng với mọi a, b>0
CMTT các hạng tử khác
\(\Rightarrow P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ac+3a^2}\le2b-a+2c-b+2a-c=a+b+c\)
vậy đề sai rồi chứ mình giải mãi chả ra mà toàn ngược dấu nên mình tưởng mình sai
Xét Bất đẳng thức phụ:
\(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)
\(\Leftrightarrow a^2b+ab^2\le a^3+b^3\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Tương tự ta có:
\(\frac{5a^3-b^3}{ab+3a^2}\le2a-c\);\(\frac{5c^3-a^3}{ac+3c^2}\le2c-b\)
Cộng lại theo vế ta có:
\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ac+3c^2}\le2b-a+2a-c+2c-b=a+b+c=2007\)
Đpcm
Cần chứng minh: \(\frac{19b^3-a^3}{ab+5b^2}\le4b-a\)
Thật vậy: \(\frac{19b^3-a^3}{ab+5b^2}\le4b-a\Leftrightarrow\left(4b-a\right)\left(ab+5b^2\right)-19b^3+a^3\ge0\)
\(\Leftrightarrow4ab^2+20b^3-a^2b-5ab^2-19b^3+a^3\ge0\)
\(\Leftrightarrow\left(a^3+b^3\right)-ab\left(a+b\right)\ge0\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)
"=" khi a=b
Tương tự: \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b;\frac{19a^3-c^3}{ac+5a^2}\le4a-c\)
Cộng theo vế:
\(\frac{19b^3-a^3}{ab+5b^2}+\frac{19c^3-b^3}{bc+5c^2}+\frac{19a^3-c^3}{ac+5a^2}\le4b-a+4c-b+4a-c=3\left(a+b+c\right)=3\)
Dấu "=" xảy ra khi a=b=c=1/3