Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Conan: bác mori ơi cháu biết hung thủ là ai rồi
Mouri : cái j , trẻ con đi chỗ khác chơi
Conan : hừ , lại phải dùng thuốc gây mê rồi , pặc
Mouri : á á :) , lại thế nữa rồi , á á
Conan : thanh tra megure ơi bác mouri nói đã tìm ra hung thủ rồi
megure : Thật không Mori , anh đã tìm ra hung thủ rồi à
Mouri : chính xác hung thủ chính là hắn :)
dự đoán của Mouri a=b=c=2
áp dụng BDT cô si ta có
\(VT\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{\sqrt{b^3+1}+\sqrt{c^3+1}+\sqrt{a^3+1}}.\)
áp dụng BDT cô si dạng shinra " mẫu số" ta có với Q= mẫu số
\(\sqrt{\left(b^3+1\right).9}\le\frac{b^3+1+9}{2}\)
\(\sqrt{\left(c^3+1\right).9}\le\frac{c^3+1+9}{2}\)
\(\sqrt{a^3+1.9}\le\frac{a^3+1+9}{2}\)
\(3Q\le\frac{1}{2}\left(a^3+b^3+c^3\right)+15.\)
có
\(a^3+8+8\ge3\sqrt[3]{a^32^32^3}=12a\)
\(b^3+8+8\ge12b\)
\(c^3+8+8\ge12c\)
\(a^3+b^3+c^3\ge72-48=24\)
\(3Q\le\frac{24}{2}+15=27\Leftrightarrow Q=9\)
thay vào VT ta được
\(VT\ge\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{9}\)
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\left(a+b+c\right)+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(VT\ge\frac{6+2\left(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\right)}{9}\)
\(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}\ge3\sqrt[3]{\sqrt{a^2b^2c^2}}=3\sqrt[3]{abc}\)
\(a+b+c\ge3\sqrt[3]{abc}\)
suy ra đươc \(\sqrt{ab}+\sqrt{ac}+\sqrt{bc}=a+b+c=6\)
\(VT\ge\frac{6+2\left(6\right)}{9}=2\)
dấu = xảy ra khi a=b=c=2
Áp dụng BĐT AM-GM và Cauchy-Schwarz ta có:
\(VT=Σ_{cyc}\frac{a}{\sqrt{\left(b+1\right)\left(b^2-b+1\right)}}\geΣ_{cyc}\frac{a}{\sqrt{\frac{\left(b+1+b^2-b+1\right)^2}{4}}}\)
\(=Σ_{cyc}\frac{2a}{b^2+2}\)\(=Σ_{cyc}\frac{2a^2}{ab^2+2a}\ge\frac{2\left(a+b+c\right)^2}{Σ_{cyc}ab^2+2\left(a+b+c\right)}\)
Cần c.minh \(\frac{2\left(a+b+c\right)^2}{Σ_{cyc}ab^2+2\left(a+b+c\right)}\ge2\)\(\Leftrightarrow\frac{36}{Σ_{cyc}ab^2+12}\ge1\)
Hay \(ab^2+bc^2+ca^2\le24\)\(\Leftrightarrow\)\(\left(a+b+c\right)^3\ge9\left(ab^2+bc^2+ca^2\right)\left(☺\right)\)
\(VT_{\left(☺\right)}\ge3\left(a+b+c\right)\left(ab+bc+ac\right)\ge9\left(ab^2+bc^2+ca^2\right)\) (vì \(\left(Σa\right)^2\ge3\left(Σab\right)\))
\(\Leftrightarrow\left(a+b+c\right)\left(ab+ac+bc\right)\ge3\left(ab^2+bc^2+ca^2\right)\)
Tự c.m nốt gợi ý: \(a^2b+b^2c+c^2a-\)\(\left(ab^2+bc^2+ca^2\right)\)\(=\frac{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}{3}\)
Và \(3abc-\left(ab^2+bc^2+ca^2\right)=ab\left(c-b\right)+bc\left(a-c\right)+ac\left(b-a\right)\)
\(VT\ge\frac{4\left(\sum\sqrt{a}\right)^2}{2\sum\sqrt{a}}=2\sum\sqrt{a}=VP\)
Ta sử dụng bất đẳng thức Chebyshev sau đây:
Nếu các số \(a\ge b\ge c,x\ge y\ge z\) thì \(3\left(ax+by+cz\right)\ge\left(a+b+c\right)\left(x+y+z\right).\)
Thực vậy bất đẳng thức cần chứng minh tương đương với \(\left(a-b\right)\left(x-y\right)+\left(b-c\right)\left(y-z\right)+\left(c-a\right)\left(z-x\right)\ge0.\)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\). Khi đó bất đẳng thức cần chứng minh tương đương với
\(\frac{a+b}{\sqrt{c\left(a+b\right)}}+\frac{b+c}{\sqrt{a\left(b+c\right)}}+\frac{c+a}{\sqrt{b\left(c+a\right)}}\ge2\left(\frac{c}{\sqrt{c\left(a+b\right)}}+\frac{a}{\sqrt{a\left(b+c\right)}}+\frac{b}{\sqrt{b\left(c+a\right)}}\right)\)
\(\leftrightarrow\frac{a+b-2c}{\sqrt{c\left(a+b\right)}}+\frac{c+a-2b}{\sqrt{b\left(c+a\right)}}+\frac{b+c-2a}{\sqrt{a\left(b+c\right)}}\ge0\) (***)
Tuy nhiên ta có \(a+b-2c\ge c+a-2b\ge b+c-2a\) và \(\frac{1}{\sqrt{c\left(a+b\right)}}\ge\frac{1}{\sqrt{b\left(c+a\right)}}\ge\frac{1}{\sqrt{a\left(b+c\right)}}\) nên theo bất đẳng thức Chebyshev
\(\frac{a+b-2c}{\sqrt{c\left(a+b\right)}}+\frac{c+a-2b}{\sqrt{b\left(c+a\right)}}+\frac{b+c-2a}{\sqrt{a\left(b+c\right)}}\)
\(\ge\frac{1}{3}\left(a+b-2c+b+c-2a+c+a-2b\right)\left(\frac{1}{\sqrt{c\left(a+b\right)}}+\frac{1}{\sqrt{b\left(c+a\right)}}+\frac{1}{\sqrt{a\left(b+c\right)}}\right)=0.\)
Vậy bất đẳng thức (***) đúng, nên ta có điều phải chứng minh.
Lời giải:
Đặt biểu thức vế trái là $P$
Hiển nhiên $a,b,c$ không thể cùng đồng thời bằng $0$
Nếu trong 3 số $a,b,c$ có 2 số bằng $0$ thì $ab+bc+ac=0$ (trái giả thiết)
Nếu trong 3 số $a,b,c$ có 1 số bằng $0$. Giả sử đó là $a$
Khi đó:
$P=\sqrt{\frac{b}{c}}+\sqrt{\frac{c}{b}}\geq 2$ theo BĐT AM-GM $(*)$
Nếu cả 3 số $a,b,c$ đều lớn hơn $0$
Áp dụng BĐT AM-GM:
\(\frac{b+c}{a}=\frac{b+c}{a}.1\left(\frac{\frac{b+c}{a}+1}{2}\right)^2\leq \left(\frac{a+b+c}{2a}\right)^2\Rightarrow \sqrt{\frac{b+c}{a}}\leq \frac{a+b+c}{2a}\Rightarrow \sqrt{\frac{a}{b+c}}\geq \frac{2a}{a+b+c}\)
Hoàn toàn tương tự:
\(\sqrt{\frac{b}{a+c}}\geq \frac{2b}{a+b+c}; \sqrt{\frac{c}{a+b}}\geq \frac{2c}{a+b+c}\)
Cộng theo vế thì $P\geq 2 (**)$
Từ $(*); (**)\Rightarrow$ đpcm.
Bạn tham khảo tại đây:
Câu hỏi của Phạm Tuấn Kiệt - Toán lớp 9 - Học toán với OnlineMath
Đặt \(a=x^3;b=y^3;c=z^3\)
\(BĐT\Leftrightarrow\sqrt[3]{\frac{x^3}{y^3+z^3}}+\sqrt[3]{\frac{y^3}{z^3+x^3}}+\sqrt[3]{\frac{z^3}{x^3+y^3}}\)
Ta đi chứng minh : \(\sqrt[3]{\frac{x^3}{y^3+z^3}}\ge\sqrt{\frac{x^2}{y^2+z^2}}\)
\(\Leftrightarrow y^2z^2\left[\left(y-z\right)^2+2\left(y^2+z^2\right)\right]\ge0\) ( luôn đúng )
Nếu trong 3 số x; y; z có 1 số bằng 0 thì \(VT=\sqrt[3]{\frac{y^3}{z^3}}+\sqrt[3]{\frac{z^3}{y^3}}\ge2\) theo AM - GM
Nếu cả 3 số x; y; z đều dương thì theo AM - GM ta dễ có:
\(LHS=\Sigma\sqrt{\frac{x^2}{y^2+z^2}}=\Sigma\frac{x^2}{\sqrt{x^2\left(y^2+z^2\right)}}\ge\Sigma\frac{2x^2}{x^2+y^2+z^2}=2\)
Vậy ta có đpcm
hoặc bạn có thể xem cách khác tại đây,vào TKHĐ của mình để xem hình ảnh nhé !