Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) ta có:
\(\dfrac{1}{a+3b}+\dfrac{1}{a+b+2c}\ge\dfrac{4}{2a+4b+2c}=\dfrac{2}{a+2b+c}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{1}{b+3c}+\dfrac{1}{2a+b+c}\ge\dfrac{2}{a+b+2c};\dfrac{1}{c+3a}+\dfrac{1}{a+2b+c}\ge\dfrac{2}{2a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=\dfrac{1}{b+3c}+\dfrac{1}{c+3a}+\dfrac{1}{a+3b}\)
\(\ge\dfrac{1}{a+b+2c}+\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}=VP\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c};\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT=\frac{1}{b+3c}+\frac{1}{c+3a}+\frac{1}{a+3b}\)
\(\ge\frac{1}{a+b+2c}+\frac{1}{2a+b+c}+\frac{1}{a+2b+c}=VP\)
Theo BĐT Bunyakovsky, ta có: \(\frac{7}{2a+b+c}=\frac{7^2}{7\left(2a+b+c\right)}=\frac{\left(2+1+4\right)^2}{2\left(a+3b\right)+\left(b+3c\right)+4\left(c+3a\right)}\)
\(\le\frac{2^2}{2\left(a+3b\right)}+\frac{1^2}{\left(b+3c\right)}+\frac{4^2}{4\left(c+3a\right)}\)
\(=\frac{2}{a+3b}+\frac{1}{b+3c}+\frac{4}{c+3a}\)(1)
Hoàn toàn tương tự: \(\frac{7}{2b+c+a}\le\frac{2}{b+3c}+\frac{1}{c+3a}+\frac{4}{a+3b}\)(2); \(\frac{7}{2c+a+b}\le\frac{2}{c+3a}+\frac{1}{a+3b}+\frac{4}{b+3c}\)(3)
Cộng theo từng vế của 3 BĐT (1), (2), (3), ta được:
\(7\left(\frac{1}{2a+b+c}+\frac{1}{2b+c+a}+\frac{1}{2c+a+b}\right)\le7\left(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\right)\)
hay \(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{a+2b+c}+\frac{1}{b+2c+a}+\frac{1}{c+2a+b}\left(q.e.d\right)\)
Đẳng thức xảy ra khi a = b = c
Áp dụng bđt 1/a+1/b >= 4/a+b
Xét 1/a+3b + 1/b+2c+a >= 4/2a+4b+2c = 2/a+2b+c
Tương tự : 1/b+3c + 1/c+2a+b >= 4/2a+2b+4c = 2/a+b+2c
1/c+3a + 1/a+2b+c >= 4/4a+2b+2c = 2/2a+b+c
=> VT + VP >= 2VP
=> VT >= VP ( ĐPCM)
k mk nha
từ giả thiết ab+bc+ca = 3abc\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
ta có \(\frac{1}{a+2b+3c}=\frac{1}{a+c+b+c+b+c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)
tương tự ta cũng có\(\hept{\begin{cases}\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\\\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\end{cases}}\)
cộng theo vế \(\Rightarrow VT\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}\)
\("="\)khi a=b=c=....
hic :( tự đăng rồi tự giải ra luôn :((( sorry mn
áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(\frac{1}{a+3b}+\frac{1}{a+b+2c}\ge\frac{4}{a+3b+a+b+2c}=\frac{2}{a+2b+c}\)
\(\frac{1}{b+3c}+\frac{1}{2a+b+c}\ge\frac{2}{a+b+2c}\)
\(\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{2a+b+c}\)
Cộng các BĐt trên theo vế ta được:
\(\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a}\ge\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\left(đpcm\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
giúp mình vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
Áp dụng BĐT Cauchy-Schwarz, ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}\ge\dfrac{\left(1+1+1\right)^2}{a+b+b}=\dfrac{9}{a+2b}\)
\(\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}\ge\dfrac{9}{b+2c}\)
\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{a}\ge\dfrac{9}{c+2a}\)
Cộng vế theo vế rồi rút gọn, ta được
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\left(\dfrac{1}{a+2b}+\dfrac{1}{b+2c}+\dfrac{1}{c+2a}\right)\left(\text{đ}pcm\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{c+a}\geq \frac{9}{b+c+c+a+c+a}=\frac{9}{3c+2a+b}\)
\(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{a+b}\geq \frac{9}{a+c+a+b+a+b}=\frac{9}{3a+2b+c}\)
\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{b+c}\geq \frac{9}{a+b+b+c+b+c}=\frac{9}{3b+2c+a}\)
Cộng theo vế rồi rút gọn ta thu được
\(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\geq 3\left(\frac{1}{3a+2b+c}+\frac{1}{3b+2c+a}+\frac{1}{3c+2a+b}\right)\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
@Ace Legona bác giúp em với