\(a,b,c>0\)

CMR : \(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

ko xoắn 1 dòng thôi

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

9 tháng 4 2017

mình cảm ơn nha

7 tháng 3 2018

Áp dụng BĐT Cô si dạng phân số ta có :

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

=> ĐPCM .

7 tháng 3 2018

b) Vì a,b,c > 0 .

Áp dụng BĐT Cô si ta có :

\(\dfrac{a^2}{b}+b\ge2a\) (1)

Tương tự ta có : \(\dfrac{b^2}{c}+c\ge2b\) (2)

\(\dfrac{c^2}{a}+a\ge2c\) (3)

Cộng từng vế => ĐPCM .

30 tháng 5 2018

Áp dụng BĐT Cô - Si , ta có :

\(\dfrac{a}{b^2}+\dfrac{1}{a}\)\(2\sqrt{\dfrac{a}{b^2}.\dfrac{1}{a}}=2.\dfrac{1}{b}\left(a,b>0\right)\left(1\right)\)

\(\dfrac{b}{c^2}+\dfrac{1}{b}\text{ ≥ }2\sqrt{\dfrac{b}{c^2}.\dfrac{1}{b}}=2.\dfrac{1}{c}\left(b,c>0\right)\left(2\right)\)

\(\dfrac{c}{a^2}+\dfrac{1}{c}\text{≥}2\sqrt{\dfrac{c}{a^2}.\dfrac{1}{c}}=2.\dfrac{1}{a}\left(a,c>0\right)\left(3\right)\)

Từ ( 1 ; 2 ; 3) Ta có :

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}\)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

17 tháng 3 2018

a)Svac-so:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2\left(đpcm\right)}\)

b)\(\dfrac{1}{a^2+1}+\dfrac{1}{b^2+1}\ge\dfrac{2}{ab+1}\)

\(\Leftrightarrow\dfrac{1}{a^2+1}-\dfrac{1}{ab+1}+\dfrac{1}{b^2+1}-\dfrac{1}{ab+1}\ge0\)

\(\Leftrightarrow\dfrac{ab+1-a^2-1}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{ab+1-b^2-1}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\dfrac{a\left(b-a\right)}{\left(a^2+1\right)\left(ab+1\right)}+\dfrac{b\left(a-b\right)}{\left(b^2+1\right)\left(ab+1\right)}\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b}{\left(b^2+1\right)\left(ab+1\right)}-\dfrac{a}{\left(a^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{b\left(a^2+1\right)-a\left(b^2+1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{a^2b+b-ab^2-a}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(\dfrac{ab\left(a-b\right)-\left(a-b\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\cdot\dfrac{ab-1}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\ge0\)(luôn đúng)

9 tháng 5 2017

Ùi mình làm theo kiểu khác thử :V, nhưng có hơi hướng giống và bổ sung :D

Câu 2 : a,b,c > 0. CM : \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)

Giải :

C1 : Áp dụng bất đẳng thức Cauchy - Schwarz dạng Engel ta có :

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{9}{a+b+c}\left(ĐPCM\right)\)

Đẳng thức xảy ra khi \(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\).

C2 : Đầy đủ hơn với cách giải đúng của bạn Hoàng Thiên Di :

Áp dụng BĐT AM-GM cho 3 số dương (sgk là cosi :v)

\(a+b+c\ge3\sqrt[3]{abc}\)\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+1+1+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\)

\(\ge3+2+2+2=9\left(ĐPCM\right)\)

Câu 3 : a,b,c > 0. CM : \(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

Giải :

\(\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)

\(\Leftrightarrow\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\ge6\)

\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge6\)

Theo bất đẳng thức Cosi : \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{xy}{yx}}=2\)

Thay vào các vế được : \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ba}}=2\sqrt{1}=2\)

\(\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\sqrt{1}=2\)

\(\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\sqrt{1}=2\)

\(\Leftrightarrow2+2+2\ge6\) (đúng)

BĐT được c/m.

9 tháng 5 2017

xem lại đề

a=b=c=1 =>3<=2

30 tháng 5 2017

b. Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=\dfrac{\left(a+b+c\right)^2}{b+c+a+c+a+b}=\dfrac{\left(a+b+c\right)^2}{2a+2b+2c}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

30 tháng 5 2017

a) Áp dụng BĐT Cauchy :

Ta có: \(x+\dfrac{1}{x}\) = \(\dfrac{x^2+1}{x}\) \(\ge\) \(\dfrac{2x}{x}\) = 2 => đpcm

=> Dấu = xảy ra khi x = 1

b) Áp dụng BĐT Svac-sơ ta có:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\) \(\ge\) \(\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)

=> đpcm

=> Dấu bằng xảy ra <=> a = b = c

3 tháng 5 2018

e)

\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)

=> ĐPCM

3 tháng 5 2018

BPT?

10 tháng 4 2017

5. phân tích ra : \(1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

áp dụng bđ cosy

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

=> đpcm

6. \(x^2-x+1=x^2-2.\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

hay với mọi x thuộc R đều là nghiệm của bpt

7.áp dụng bđt cosy

\(a^4+b^4+c^4+d^4\ge2\sqrt{a^2.b^2.c^2.d^2}=4abcd\left(đpcm\right)\)

10 tháng 4 2017

1. (a-b)2>=0

=> a2+b2-2ab>=0

2. (a-b)2>=0

=> a2+b2>=2ab

=> \(\dfrac{a^2 +b^2}{2}\ge ab\)

3.Ta phích ra thôi,ta được : a2+2a < a2+2a+1

=> cauis trên đúng

8 tháng 4 2018

Đặt P=\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\)

Không mất tính tổng quát giả sử a ≥b ≥ c , thế thì \(\dfrac{1}{b+c}\ge\dfrac{1}{c+a}\ge\dfrac{1}{a+b}\) .Áp dụng bất đẳng thức Chebyshev cho hai dãy đơn điệu cùng chiều ta có :

\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{1}{3}\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}\right)\)

\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\left(\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1+\dfrac{c}{a+b}+1\right)\)

Hay \(P\ge\dfrac{1}{3}\left(P+3\right)\) nghĩa là \(P\ge\dfrac{3}{2}^{\left(đpcm\right)}\)

8 tháng 4 2018
https://i.imgur.com/UCvj2rx.jpg