Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3-3abc=0\)
\(a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)
\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-bc-ca\right)-3ab\left(a+b+c\right)=0\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
- Nếu \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
\(\Rightarrow P=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)
- Nếu \(a=b=c\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
a3+b3+c3=3abc
<=>(a+b)3-3ab(a+b)-3abc+c3=0
<=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab.(a+b+c)=0
<=>(a+b+c)(a2+b2+c2-ab-bc-ac)=0
<=>(a+b+c)(2a2+2b2+2c2-2ab-2bc-2ac)=0
<=>(a+b+c)[(a-b)2+(b-c)2+(c-a)2]=0
<=>a+b+c=0 [(a-b)2+(b-c)2+(c-a)2 khác 0]
=>a2+b2-c2=-2ab;b2+c2-a2=-2bc;c2+a2-b2=-2ac
Suy ra : P=\(-\left(\dfrac{1}{2ab}+\dfrac{1}{2bc}+\dfrac{1}{2ac}\right)=-\dfrac{a+b+c}{2abc}=0\)
đăng từ hqua mà k ai cmt hả :) ngai vàng bưu điện là của mị :v
Bài 1:
Áp dụng BĐT Holder:
\((a^7+b^7+c^7)(a+b+c)(a+b+c)\geq (a^3+b^3+c^3)^3\)
\(\Rightarrow P=a^7+b^7+c^7\geq \frac{(a^3+b^3+c^3)^3}{(a+b+c)^2}\) \((1)\)
Tiếp tục Holder:
\((a^3+b^3+c^3)(1+1+1)(1+1+1)\geq (a+b+c)^3\)
\(\Rightarrow (a+b+c)\leq \sqrt[3]{9(a^3+b^3+c^3)}\) \((2)\)
Từ \((1),(2)\Rightarrow P\geq \frac{\sqrt[3]{(a^3+b^3+c^3)^7}}{\sqrt[3]{81}}\) \((3)\)
Áp dụng BĐT AM-GM:
\((a^3+b^3+c^3)^2\geq 3(a^3b^3+b^3c^3+c^3a^3)\geq 3\)
\(\Rightarrow a^3+b^3+c^3\geq \sqrt{3}\) \((4)\)
Từ \((3),(4)\Rightarrow P\geq \sqrt[6]{\frac{1}{3}}\)
Vậy \(P_{\min}=\sqrt[6]{\frac{1}{3}}\Leftrightarrow a=b=c=\sqrt[6]{\frac{1}{3}}\)
Bài 2:
Áp dụng BĐT AM-GM:
\(a^3+\sqrt{\frac{1}{27}}+\sqrt{\frac{1}{27}}\geq 3\sqrt[3]{a^3.\sqrt{\frac{1}{27^2}}}=a\)
\(b^3+\sqrt{\frac{1}{27}}+\sqrt{\frac{1}{27}}\geq 3\sqrt[3]{b^3.\sqrt{\frac{1}{27^2}}}=b\)
\(c^3+\sqrt{\frac{1}{27}}+\sqrt{\frac{1}{27}}\geq 3\sqrt[3]{c^3.\sqrt{\frac{1}{27^2}}}=c\)
Cộng theo vế:
\(a^3+b^3+c^3+6\sqrt{\frac{1}{27}}\geq a+b+c\)
Áp dụng BĐT AM-GM:
\((a+b+c)^2\geq 3(ab+bc+ac)=3\Rightarrow a+b+c\geq \sqrt{3}\)
Do đó, \(a^3+b^3+c^3\geq \sqrt{3}-6\sqrt{\frac{1}{27}}=\sqrt{\frac{1}{3}}\) (đpcm)
Dấu bằng xảy ra khi \(a=b=c=\sqrt{\frac{1}{3}}\)
Lời giải:
Bài 1:
Áp dụng BĐT Cô -si ta có:
\(a^3+1+1\geq 3\sqrt[3]{a^3}=3a\)
\(b^3+1+1\geq 3\sqrt[3]{b^3}=3b\)
Cộng theo vế:
\(a^3+b^3+4\geq 3(a+b)\)
\(\Leftrightarrow 6\geq 3(a+b)\Leftrightarrow a+b\leq 2\)
Vậy \((a+b)_{\max}=2\). Dấu bằng xảy ra khi \(a=b=1\)
Bài 2:
Áp dụng BĐT Cô- si ta có:
\(\frac{a^3}{b+c}+\frac{b+c}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{a^3}{8}}=\frac{3}{2}a\)
\(\frac{b^3}{c+a}+\frac{c+a}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{b^3}{8}}=\frac{3}{2}b\)
\(\frac{c^3}{a+b}+\frac{a+b}{4}+\frac{1}{2}\geq 3\sqrt[3]{\frac{c^3}{8}}=\frac{3}{2}c\)
Cộng theo vế:
\(T+\frac{1}{2}(a+b+c)+\frac{3}{2}\geq \frac{3}{2}(a+b+c)\)
\(\Leftrightarrow T\geq a+b+c-\frac{3}{2}\)
Theo BĐT Cô-si: \(a+b+c\geq 3\sqrt[3]{abc}=3\)
\(\Rightarrow T\geq 3-\frac{3}{2}=\frac{3}{2}\)
Vậy \(T_{\min}=\frac{3}{2}\Leftrightarrow a=b=c=1\)
Bài 3:
Điều kiện đề bài tương đương với:
\(a\leq 1; b+2a\leq 4; 2c+3b+6a\leq 18\)
Ta có:
\(A=2\left (\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)+\frac{1}{3}\left(\frac{1}{2a}+\frac{1}{b}\right)+\frac{1}{2a}\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\right)(6a+3b+2c)\geq (1+1+1)^2\)
\(\Rightarrow \frac{1}{6a}+\frac{1}{3b}+\frac{1}{2c}\geq \frac{9}{6a+3b+2c}\geq \frac{9}{18}=\frac{1}{2}\) (1)
\(\left(\frac{1}{2a}+\frac{1}{b}\right)(2a+b)\geq (1+1)^2\)
\(\Rightarrow \frac{1}{2a}+\frac{1}{b}\geq \frac{4}{2a+b}\geq \frac{4}{4}=1\) (2)
\(\frac{1}{2a}\geq \frac{1}{2.1}=\frac{1}{2}\) (3)
Từ (1)(2)(3) suy ra \(A\geq 2.\frac{1}{2}+\frac{1}{3}.1+\frac{1}{2}=\frac{11}{6}\)
Dấu bằng xảy ra khi \(a=1; b=2; c=3\)
BĐT 1 sai ngay với \(a=\sqrt{0,1},b=\sqrt{0,2},c=\sqrt{2,7}\)
BĐT 2 tương đương với đi chứng minh \(a^4b^4+b^4c^4+c^4a^4\geq 3a^2b^2c^2\)
Áp dụng BĐT AM-GM: \(a^4b^4+b^4c^4\geq 2a^2b^4c^2\)
Tương tự \(b^4c^4+c^4a^4\geq 2b^2c^4a^2,a^4b^4+c^4a^4\geq 2a^4b^2c^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow a^4b^4+b^4c^4+c^4a^4\geq a^2b^2c^2(a^2+b^2+c^2)=3a^2b^2c^2\)
Do đó ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$
thì ra cái đầu sai nghĩ mãi ko ra, đại ca thông minh thật :v
Sửa: \(x^2+y^2+z^2=3\)
Ta có: \(f\left(x\right)=\dfrac{x}{3-yz}\le\dfrac{2x}{6-\left(y^2+z^2\right)}=\dfrac{2x}{x^2+3}\)
\(\Rightarrow f''\left(x\right)=\dfrac{4x\left(x-3\right)\left(x+3\right)}{\left(x^2+3\right)^3}< 0\forall x\le3\) là hàm lõm
Áp dụng BĐT Jensen ta có:
\(f\left(a\right)+f\left(b\right)+f\left(c\right)\le3f\left(\dfrac{a+b+c}{3}\right)\le3f\left(1\right)=\dfrac{3}{2}\)
Mi ngu lắm! Bài này mà lm k ra!
* Đồ con heooooooooooooo......!*
a+b+c=0
=>a+b=-c
a^3+b^3+c^3
=(a+b)^3+c^3-3ab(a+b)
=(-c)^3+c^3-3ab*(-c)
=3bac