Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô -si cho 3 số dương:
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Áp dụng BĐT Cauchy-Schwarz dạng phân thức cho các số không âm:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
\(''=''\Leftrightarrow a=b=c\)
Trình bày như vậy khó lắm nếu bn ấy chưa tìm hiểu
BĐT
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=9\)( do a,b,c>0)
\(\Leftrightarrow\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)\ge0\)
\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab}+\frac{\left(b-c\right)^2}{bc}+\frac{\left(a-c\right)^2}{ac}\ge0\)(đúng)
\(a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c>\frac{bc+ac+ab}{abc}\)
\(\Leftrightarrow a+b+c>bc+ac+ab\)
\(\Leftrightarrow a+b+c-bc-ac-ab>0\)
\(\Leftrightarrow abc+a+b+c-bc-ac-ab-abc>0\)
\(\Leftrightarrow abc+a+b+c-bc-ac-ab-1>0\)
\(\Leftrightarrow ab\left(c-1\right)-a\left(c-1\right)-b\left(c-1\right)+\left(c-1\right)>0\)
\(\Leftrightarrow\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) (đpcm)
Sử dụng bất đẳng thức AM-GM cho 3 số thực dương ta có :
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=\frac{3}{\sqrt[3]{abc}}\)
Nhân theo vế hai bất đẳng thức cùng chiều trên ta được :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=3.3=9\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
Vậy ta có điều phải chứng minh
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9.\)
\(a+b+c\ge3\sqrt[3]{abc}\) 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) 2
nhân 1 vs 2
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\sqrt[3]{\frac{abc}{abc}}=9\)