Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3=\frac{b^3}{d^3}\left(1\right)\)
\(\frac{a^3+b^3}{c^3+d^3}=\frac{\left(bk\right)^3+b^3}{\left(dk\right)^3+d^3}=\frac{b^3k^3+b^3}{d^3k^3+d^3}=\frac{b^3\left(k^3+1\right)}{d^3\left(k^3+1\right)}=\frac{b^3}{d^3}\left(2\right)\)
Từ (1!) và (2) => \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
\(\left(a+3\right)\left(b-4\right)-\left(a-3\right)\left(b+4\right)=0\\ \Leftrightarrow ab-4a+3b-12-\left(ab+4a-3b-12\right)=0\\ \Leftrightarrow ab-4a+3b-12-ab-4a+3b+12=0\\\Leftrightarrow6b-8a=0\\ \Leftrightarrow6b=8a\\ \Leftrightarrow3b=4a\\ \Leftrightarrow \dfrac{a}{3}=\dfrac{b}{4}\)
ta có:
b^2=ac =>a/b=b/c (1)
c^2=bd =>b/c=c/d (2)
(1)(2)=>a/b=b/c=c/d
=>a^3/b^3=b^3/c^3=c^3/d^3=abc/bcd
=>(a^3+b^3+c^30)/(b^3+c^3+d^3)=a/d
Vay.......
Nhớ tick mk nha
ta có:
b^2=ac =>a/b=b/c (1)
c^2=bd =>b/c=c/d (2)
(1)(2)=>a/b=b/c=c/d
=>a^3/b^3=b^3/c^3=c^3/d^3=abc/bcd
=>(a^3+b^3+c^3)/(b^3+c^3+d^3)=a/d
Vay dpcm
Bài làm :
Ta có : \(b^2=ca\Rightarrow\frac{a}{b}=\frac{b}{c}\), \(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\) ( Tính chất dãy tỉ số bằng nhau ) (1)
Lại có : \(\frac{a^3}{b^3}=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a.b.c}{b.c.d}=\frac{a}{d}\)
( Do \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\) ) (2)
Từ (1) và (2) \(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\) ( đpcm )
Chúc bạn học tốt !!
Gọi \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)(1)
Thay (1) vào ta có :
\(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k-3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\)(2)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\)(3)
Từ (2) và (3)
\(\Rightarrow\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
\(\RightarrowĐPCM\)
Giả sử 2 số trong 3 số không bằng nhau :
a < b (1)
Trong hai lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại
Vì vậy :
Do : ab = bc . Mà a < b \( \implies\) c < b
Ta có : bc = ca mà c < b \( \implies\) c < a
Ta có : ca = ab mà c < a \( \implies\) a > b (2)
Từ (1) ; (2) \( \implies\) Mâu thuẫn
\( \implies\) a = b = c (đpcm)
BL: a + b + c > 0 => a + b >= -c
Ta có: a + b .>= -c
=> ( a + b )3 >= (-c)3
=> a3 + b3 + 3ab ( ab) >= (-c)3
=> a3 + b3 + 3ab ( -c) >= (-c)3
=> a3 + b3 + c3 >= 3abc ( ĐPCM)
\(a^3+b^3+c^3\ge3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\ge0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (Luôn đúng \(\forall a;b;c>0\) )
Vậy \(a^3+b^3+c^3\ge3abc\)