Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a+b+c=0=>a+b=-c
ta lại có a^3+b^3+c^3
=(A+b)(a^2-ab+b^2)+c^3
=-c [(A+b)^2-2ab-ab)]+c^3
= -c (-c^2-3ab)+c^3
= -c(c^2-3ab)+c^3
= -c^3 +3abc+c^3
=3abc
vì mọi số mũ abc đều mũ 3 nên 3abc là kết quả khi cộng các số đó mũ 3 thì kết quả ko thay đổi
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc
(a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc
(a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc
(a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc
thay a+b+c=0 ta được
03=a3+b3+c3+3.0(ab+bc+ac)-3abc
0=a3+b3+c3-3abc
=>a3+b3+c3=3abc
Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc
(a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc
(a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc
(a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc
thay a+b+c=0 ta được
03=a3+b3+c3+3.0(ab+bc+ac)-3abc
0=a3+b3+c3-3abc
=>a3+b3+c3=3abc
a+b+c=0
=>a+b=-c
=>(a+b)3=-c3
=>a3+b3+3a2b+3ab2+c3=0
=>a3+b3+c3+3ab(a+b)=0
Mà a+b=-c
=>a3+b3+c3+3ab.(-c)=0
=>a3+b3+c3-3abc=0
=>a3+b3+c3=3abc
Có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3-3abc=-c^3\) (Vì a+b=-c)
\(\Leftrightarrow a^3+b^3+c^2=3abc\)
Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc
(a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc
(a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc
(a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc
Thay a+b+c=0 ta được
03=a3+b3+c3+3.0(ab+bc+ac)-3abc
0=a3+b3+c3-3abc
=>a3+b3+c3=3abc
1. \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
2. \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
3.Còn có a + b + c = 0 nữa mà bn.
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)
+ \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
Xét \(a^3+b^3+c^3-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà \(a+b+c=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có :
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
luôn đúng do a+b+c=0
Ta có \(a^3+b^3+c^3-3abc=a^3+b^3+c^3-abc-abc-abc+ac^2+a^2c-ac^2-a^2c+ab^2+a^2b-ab^2-a^2b+b^2c+bc^2-b^2c-bc^2=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)-ab\left(a+b+c\right)-bc\left(a+b+c\right)-ac\left(a+b+c\right)=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\)=0 vạy a+b+c=0
Ta xét vế trái a^3+b^3+c^3=
[(a+b)(a^2-ab+b^2)]+c^3 (1)
Mà ta có theo giả thiết a+b+c=0 suy ra c= - (a+b)suy ra
c^3= -(a+b)^3
Thay vào (1) ta có [(a+b)(a^2-ab+b^2)] - (a+b)^3
(Lấy nhân tử ta có)=(a+b)[a^2-ab+b^2-(a+b)^2]
(Phân tích (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)]
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2)
=(a+b).(-3ab)
= -(a+b).3ab (2)
Theo giả thiết ta có a+b+c=0 suy ra c= -(a+b)
Thay vào (2) Ta được
=3abc
Tích nha Anh Thư
ta xet ve trai a^3+b^3+c^3=
[(a+b)(a^2-ab+b^2)]+c^3 dung ko.(1)
ma ta co theo gia thiet a+b+c=0 suy ra c= - (a+b)suy ra
c^3= -(a+b)^3
thay vao`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3
(lay nhan tu chung ta co)=(a+b)[a^2-ab+b^2-(a+b)^2]
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)]
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2)
=(a+b).(-3ab)
= -(a+b).3ab (2)
theo gia thiet ta co a+b+c=0 suy ra c= -(a+b)
thay vao(2) ta dc
=3abc
vay la xong
Từ a + b + c = 0
=> a + b = -c
=> ( a + b )3 = ( -c )3
=> a3 + 3a2b + 3ab2 + b3 = -c3
=> a3 + b3 + ( 3a2b + 3ab2 ) + c3 = 0
=> a3 + b3 + c3 + 3ab( a + b ) = 0
=> a3 + b3 + c3 + 3ab.(-c) = 0 [ do a + b = -c ]
=> a3 + b3 + c3 - 3abc = 0
=> đpcm
\(a+b+c=0\Leftrightarrow a+b=-c\)thế vào biểu thức:
\(a^3+b^3+c^3-3abc=a^3+b^3+\left(-a-b\right)^3-3ab\left(-a-b\right)\)
\(=a^3+b^3-\left(a^3+3a^2b+3ab^2+b^3\right)+3a^2b+3ab^2=0\)