K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2020

Từ a + b + c = 0

=> a + b = -c

=> ( a + b )3 = ( -c )3

=> a3 + 3a2b + 3ab2 + b3 = -c3

=> a3 + b3 + ( 3a2b + 3ab2 ) + c3 = 0

=> a3 + b3 + c3 + 3ab( a + b ) = 0

=> a3 + b3 + c3 + 3ab.(-c) = 0 [ do a + b = -c ]

=> a3 + b3 + c3 - 3abc = 0

=> đpcm 

DD
12 tháng 11 2020

\(a+b+c=0\Leftrightarrow a+b=-c\)thế vào biểu thức: 

\(a^3+b^3+c^3-3abc=a^3+b^3+\left(-a-b\right)^3-3ab\left(-a-b\right)\) 

                                             \(=a^3+b^3-\left(a^3+3a^2b+3ab^2+b^3\right)+3a^2b+3ab^2=0\)

27 tháng 9 2015

ta có a+b+c=0=>a+b=-c

ta lại có a^3+b^3+c^3

          =(A+b)(a^2-ab+b^2)+c^3

          =-c [(A+b)^2-2ab-ab)]+c^3

        =   -c (-c^2-3ab)+c^3

        =      -c(c^2-3ab)+c^3

         =  -c^3 +3abc+c^3

         =3abc

27 tháng 9 2015

vì mọi số mũ abc đều mũ 3 nên 3abc là kết quả khi cộng các số đó mũ 3 thì kết quả ko thay đổi

29 tháng 6 2015

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc

Do a+b+c=0

=>a3+b3+c3=3abc(ĐPCM)

29 tháng 6 2015

 Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc

            (a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc

            (a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc

            (a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc

  thay a+b+c=0 ta được 

              03=a3+b3+c3+3.0(ab+bc+ac)-3abc

             0=a3+b3+c3-3abc

=>a3+b3+c3=3abc

1 tháng 10 2016

Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc

            (a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc

            (a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc

            (a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc

  thay a+b+c=0 ta được 

              03=a3+b3+c3+3.0(ab+bc+ac)-3abc

             0=a3+b3+c3-3abc

=>a3+b3+c3=3abc

1 tháng 10 2016

a+b+c=0

=>a+b=-c

=>(a+b)3=-c3

=>a3+b3+3a2b+3ab2+c3=0

=>a3+b3+c3+3ab(a+b)=0

Mà a+b=-c

=>a3+b3+c3+3ab.(-c)=0

=>a3+b3+c3-3abc=0

=>a3+b3+c3=3abc

4 tháng 10 2016

Có: \(a+b+c=0\)

\(\Leftrightarrow a+b=-c\)

\(\Leftrightarrow\left(a+b\right)^3=-c^3\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3-3abc=-c^3\) (Vì a+b=-c)

\(\Leftrightarrow a^3+b^3+c^2=3abc\)

4 tháng 10 2016

Ta có :(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2c+3b2a+3c2a+3c2b+6abc

            (a+b+c)3=a3+b3+c3+(3a2b+3a2b+3abc)+(3b2c+3b2a+3abc)+(3c2a+3c2b+3abc)-3abc

            (a+b+c)3=a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)-3abc

            (a+b+c)3=a3+b3+c3+3(a+b+c)(ab+bc+ac)-3abc

  Thay a+b+c=0 ta được 

              03=a3+b3+c3+3.0(ab+bc+ac)-3abc

             0=a3+b3+c3-3abc

=>a3+b3+c3=3abc

28 tháng 10 2018

1. \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

2. \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3.Còn có a + b + c = 0 nữa mà bn.

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)

+ \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

28 tháng 10 2018

làm đúng mà ko hiểu

Xét \(a^3+b^3+c^3-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà \(a+b+c=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\) 

14 tháng 7 2015

a+b+c=0

=>(a+b+c)3=0

=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0

=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0

=>a3+b3+c3+3ab(a+b+c)+....mk phải ăn cơm rồi

27 tháng 8 2015

 thay a^3+b^3=(a+b)^3 -3ab(a+b) .Ta có : 

a^3+b^3+c^3-3abc=0 

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0 

<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0 

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0 

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)... 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0 

luôn đúng do a+b+c=0

18 tháng 2 2020

Ta có \(a^3+b^3+c^3-3abc=a^3+b^3+c^3-abc-abc-abc+ac^2+a^2c-ac^2-a^2c+ab^2+a^2b-ab^2-a^2b+b^2c+bc^2-b^2c-bc^2=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)-ab\left(a+b+c\right)-bc\left(a+b+c\right)-ac\left(a+b+c\right)=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\)=0 vạy a+b+c=0

Ta xét vế trái a^3+b^3+c^3= 
[(a+b)(a^2-ab+b^2)]+c^3  (1) 
Mà ta có theo giả thiết a+b+c=0 suy ra c= - (a+b)suy ra 
c^3= -(a+b)^3
Thay vào (1) ta có [(a+b)(a^2-ab+b^2)] - (a+b)^3 
(Lấy nhân tử ta có)=(a+b)[a^2-ab+b^2-(a+b)^2] 
(Phân tích (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)] 
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2) 
=(a+b).(-3ab) 
= -(a+b).3ab (2) 
Theo giả thiết ta có  a+b+c=0 suy ra c= -(a+b) 
Thay vào (2) Ta được 
=3abc 
Tích nha  Anh Thư

12 tháng 7 2016

ta xet ve trai a^3+b^3+c^3= 
[(a+b)(a^2-ab+b^2)]+c^3 dung ko.(1) 
ma ta co theo gia thiet a+b+c=0 suy ra c= - (a+b)suy ra 
c^3= -(a+b)^3 
thay vao`(1) ta co [(a+b)(a^2-ab+b^2)] - (a+b)^3 
(lay nhan tu chung ta co)=(a+b)[a^2-ab+b^2-(a+b)^2] 
(phan h (a+b)^2) =(a+b)[a^2-ab+b^2-(a^2+2ab+b^2)] 
=(a+b)(a^2-ab+b^2-a^2-2ab-b^2) 
=(a+b).(-3ab) 
= -(a+b).3ab (2) 
theo gia thiet ta co a+b+c=0 suy ra c= -(a+b) 
thay vao(2) ta dc 
=3abc 
vay la xong