K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

Bạn tham khảo ở đây nhé

https://olm.vn/hoi-dap/detail/49527613309.html

24 tháng 12 2019

ở đây nữa:

https://hoc24.vn/hoi-dap/question/32718.html

2 tháng 2 2020

\(0\le a\le b\le c\le1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Rightarrow ab-a-b+1\ge0\)

\(\Rightarrow ab+1\ge a+b\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\le\frac{2c}{a+b+c}\)

Tương tự ta có: \(\frac{a}{bc+1}\le\frac{2a}{a+b+c}\)\(\frac{b}{ca+1}\le\frac{2b}{a+b+c}\)

Cộng ba vế của các bđt trên, ta được:

\(\text{Σ}_{cyc}\frac{a}{bc+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)

2 tháng 2 2020

Vì \(0\le a\le b\le c\le1\)nên: 

\(\left(a-1\right)\left(b-1\right)\ge0\)\(\Rightarrow ab-a-b+1\ge0\)\(\Rightarrow ab+1\ge a+b\)\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\) (1)

\(\left(b-1\right)\left(c-1\right)\text{​​}\ge0\)\(\Rightarrow bc-b-c+1\text{​​}\ge0\)\(\Rightarrow bc+1\text{​​}\ge b+c\)\(\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\)   (2)

\(\left(a-1\right)\left(c-1\right)\ge0\)\(\Rightarrow ac-a-c+1\text{​​}\ge0\)\(\Rightarrow ac+1\ge a+c\)\(\Rightarrow\frac{b}{ac+1}\le\frac{b}{a+c}\)   (3)

Từ (1), (2), (3) \(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)  (4)

Mà \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)  (5)

Từ (4) và (5) \(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)  (đpcm)

21 tháng 9 2019

Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}.\)

\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}\)

\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}.\)

\(\Rightarrow a=b=c\)

Khi đó: \(P=\frac{ab^2+bc^2+ac^2}{a^3+b^3+c^3}=1.\)

Vậy \(P=1.\)

Chúc bạn học tốt!

22 tháng 9 2019

Bạn ơi cho mình hỏi

Làm sao để ghi phân số và dấu => ở đây vậybatngo