Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở đây nhé
https://olm.vn/hoi-dap/detail/49527613309.html
ở đây nữa:
https://hoc24.vn/hoi-dap/question/32718.html
\(0\le a\le b\le c\le1\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)
\(\Rightarrow ab-a-b+1\ge0\)
\(\Rightarrow ab+1\ge a+b\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\le\frac{2c}{a+b+c}\)
Tương tự ta có: \(\frac{a}{bc+1}\le\frac{2a}{a+b+c}\); \(\frac{b}{ca+1}\le\frac{2b}{a+b+c}\)
Cộng ba vế của các bđt trên, ta được:
\(\text{Σ}_{cyc}\frac{a}{bc+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vì \(0\le a\le b\le c\le1\)nên:
\(\left(a-1\right)\left(b-1\right)\ge0\)\(\Rightarrow ab-a-b+1\ge0\)\(\Rightarrow ab+1\ge a+b\)\(\Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\) (1)
\(\left(b-1\right)\left(c-1\right)\text{}\ge0\)\(\Rightarrow bc-b-c+1\text{}\ge0\)\(\Rightarrow bc+1\text{}\ge b+c\)\(\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\) (2)
\(\left(a-1\right)\left(c-1\right)\ge0\)\(\Rightarrow ac-a-c+1\text{}\ge0\)\(\Rightarrow ac+1\ge a+c\)\(\Rightarrow\frac{b}{ac+1}\le\frac{b}{a+c}\) (3)
Từ (1), (2), (3) \(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\) (4)
Mà \(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\) (5)
Từ (4) và (5) \(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\) (đpcm)
Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}.\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}.\)
\(\Rightarrow a=b=c\)
Khi đó: \(P=\frac{ab^2+bc^2+ac^2}{a^3+b^3+c^3}=1.\)
Vậy \(P=1.\)
Chúc bạn học tốt!
Bạn ơi cho mình hỏi
Làm sao để ghi phân số và dấu => ở đây vậy