Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có BĐT:
\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)
\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:
\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)
Khi \(a=b=c\)
\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+ab+ac+bc}\)
\(=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\Rightarrow\frac{bc}{\sqrt{a+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}=\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cô-si :
\(\sqrt{\frac{b^2c^2}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{bc}{a+b}+\frac{bc}{a+c}}{2}\)
Chứng minh tương tự với các phân thức còn lại, cộng theo vế ta có :
\(VT\le\frac{\left(\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{ab}{a+c}+\frac{ab}{b+c}\right)}{2}\)
\(=\frac{\frac{c\left(a+b\right)}{a+b}+\frac{b\left(a+c\right)}{a+c}+\frac{a\left(b+c\right)}{b+c}}{2}=\frac{a+b+c}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
bạn tham khảo nhé : https://olm.vn/hoi-dap/detail/222370673956.html
Cho a,b,c>0 và a+b+c=1. CMR: \(\frac{a-bc}{a+bc}+\frac{b-ca}{b+ca}+\frac{c-ab}{c+ab}\le\frac{3}{2}\)
Ta có : a + bc = a ( a + b + c ) + bc = ( a + c ) ( a + b )
BĐT cần chứng minh tương đương với :
\(\frac{a\left(a+b+c\right)-bc}{\left(a+c\right)\left(a+b\right)}+\frac{b\left(a+b+c\right)-ca}{\left(b+c\right)\left(b+a\right)}+\frac{c\left(a+b+c\right)-ab}{\left(c+a\right)\left(c+b\right)}\le\frac{3}{2}\)
\(\left(a^2+ab+ac-bc\right)\left(b+c\right)+\left(ab+b^2+bc-ac\right)\left(a+c\right)+\left(ac+bc+c^2-ab\right)\left(a+b\right)\le\frac{3}{2}\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
khai triển ra , ta được :
\(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2+6abc\le\frac{3}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)+3abc\)
\(\Rightarrow\frac{-1}{2}\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)\le-3abc\)
\(\Rightarrow a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\ge6abc\)( nhân với -2 thì đổi dấu )
\(\Rightarrow b\left(a^2-2ac+c^2\right)+a\left(b^2-2bc+c^2\right)+c\left(a^2-2ab+b^2\right)\ge0\)
\(\Rightarrow b\left(a-c\right)^2+a\left(b-c\right)^2+c\left(a-b\right)^2\ge0\)
vì BĐT cuối luôn đúng nên BĐT lúc đầu đúng
Dấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{1}{3}\)
Ta có: \(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng cộng mẫu
Ta có: \(\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)\)
\(=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)=\frac{1}{4}\left[\frac{abc}{ab\left(1+c\right)}+\frac{1}{a+1}\right]=\frac{1}{4}\left(\frac{c}{1+c}+\frac{1}{a+1}\right)\) (1)
CMT2 được: \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\) (2)
\(\frac{1}{ca+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\) (3)
Cộng (1);(2) và (3) vế theo vế
Ta được: \(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+c+2}\le\frac{1}{4}\left[\left(\frac{c}{c+1}+\frac{1}{c+1}\right)+\left(\frac{a}{a+1}+\frac{1}{a+1}\right)+\left(\frac{b}{b+1}+\frac{1}{b+1}\right)\right]\)
\(=\frac{1}{4}.\left(1+1+1\right)=\frac{3}{4}\)
=> đpcm
Lời giải:
\(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-\underbrace{\left(\frac{a+b}{a+b+1}+\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\right)}_{M}\)
Áp dụng BĐT Cauchy-Schwarz:
\(M=\frac{(a+b)^2}{(a+b)(a+b+1)}+\frac{(b+c)^2}{(b+c)(b+c+1)}+\frac{(c+a)^2}{(c+a)(c+a+1)}\geq \frac{4(a+b+c)^2}{(a+b)(a+b+1)+(b+c)(b+c+1)+(c+a)(c+a+1)}\)
\(=\frac{4(a^2+b^2+c^2+2ab+2bc+2ac)}{2(a^2+b^2+c^2+ab+bc+ac)+2(a+b+c)}\geq \frac{4(a^2+b^2+c^2+2ab+2bc+2ac)}{2(a^2+b^2+c^2+ab+bc+ac)+2(ab+bc+ac)}=2\) (do $a+b+c\leq ab+bc+ac$)
Vậy $M\geq 2$
$\Rightarrow \frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}=3-M\leq 1$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
Ta có: \(a^2+3=\left(a+b\right)\left(a+c\right)\)
Áp dụng BĐT AM-GM ta có:
\(VT=\dfrac{a}{a^2+7}+\dfrac{b}{b^2+7}+\dfrac{c}{c^2+7}\le\sum\dfrac{a}{4\sqrt{a^2+3}}=\sum\dfrac{a}{4\sqrt{\left(a+b\right)\left(a+c\right)}}\)
\(\le\sum\dfrac{a}{4}.\dfrac{1}{2}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)=\sum\dfrac{1}{8}\left(\dfrac{a}{a+b}+\dfrac{b}{a+b}\right)=\dfrac{3}{8}\)
Dấu = xảy ra khi a=b=c=1
P/s:\(\sum\limits_{x,y,z}x=x+y+z\) :Tổng hoán vị
Ta có đẳng thức quen thuộc: \(\frac{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=1\)
\(\Rightarrow\frac{\left(x+y\right)}{z}+\frac{\left(y+z\right)}{x}+\frac{\left(z+x\right)}{y}+2=\frac{\left(x+y\right)}{z}.\frac{\left(y+z\right)}{x}.\frac{\left(z+x\right)}{y}\)
Đặt \(\frac{x+y}{z}=a;\frac{y+z}{x}=b;\frac{z+x}{y}=c\) thì ta thu được giả thiết.
Vậy tồn tại các số x, y, z > 0 sao cho \(a=\frac{x+y}{z};b=\frac{y+z}{x};c=\frac{z+x}{y}\)
BĐT quy về: \(\Sigma_{cyc}\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}\le\frac{3}{2}\)
Áp dụng BĐT AM-GM: \(VT\le\frac{1}{2}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)=\frac{3}{2}\)
P/s: Em không chắc về cách trình bày ở chỗ phần đặt..., nhưng cách đặt trên luôn tồn tại đó!
Cách khác tự nhiên hơn!
\(a+b+c+2=abc\)
\(\Leftrightarrow\Sigma_{cyc}\left(a+1\right)\left(b+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)
\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)
Đặt \(\left(\frac{1}{a+1};\frac{1}{b+1};\frac{1}{c+1}\right)=\left(z;x;y\right)\text{ thì }x+y+z=1\Rightarrow a=\frac{1-z}{z}=\frac{x+y}{z}\)
Tương tự: \(b=\frac{y+z}{x};c=\frac{z+x}{y}\). Rồi giải như bài ban nãy.
Thay x=y=z=1/3 thấy sai r