Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a hạ bậc rồi áp dụng cosa + cosb
Câu b thì mối liên hệ giữa tan với cot là ra
ta thấy:\(\dfrac{a}{1+b^2}=a-\dfrac{ab^2}{1+b^2}\)
> áp dụng bđt cosi: 1+b2>=2b
>\(a-\dfrac{ab^2}{1+b^2}\ge a-\dfrac{ab^2}{2b}=a-\dfrac{ab}{2}\)
cminh tương tự với \(\dfrac{b}{1+c^2};\dfrac{c}{1+b^2}\)
cộng lần lượt 2 vế ta vừa cminh
>bthức tương đương với: a+b+c-\(\dfrac{ab+bc+ca}{2}\ge3-\dfrac{3}{2}=\dfrac{3}{2}\) đpcminh
(vì (a+b+c)2>=3(ab+bc+ca) hay 32>=3(ab+bc+ca)
> ab+bc+ca<=3)
a) ta có :
\(\Delta'=1^2-\left(-1-m\right)\left(m^2-1\right)=1-\left(-m^2+1-m^3+m\right)=1+m^2-1+m^3-m=m^3+m^2-m=m\left(m^2+m-1\right)\)để phương trình có nghiệm thì \(\Delta\ge0\)
hay \(m\left(m^2+m-1\right)\ge0\)
=> \(\left\{{}\begin{matrix}m\ge0\\m^2+m-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left(m+\dfrac{1}{2}\right)^2\ge\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m+\dfrac{1}{2}\ge\\m+\dfrac{1}{2}\le-\dfrac{\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\dfrac{\sqrt{5}}{2}}\)
a, \(\dfrac{b}{5}+\dfrac{1}{10}=\dfrac{1}{a}\)
\(\Leftrightarrow\dfrac{2b}{10}+\dfrac{1}{10}=\dfrac{1}{a}\)
\(\Leftrightarrow\dfrac{2b+1}{10}=\dfrac{1}{a}\)
\(\Leftrightarrow\left(2b+1\right)a=10\)
Vì \(a,b\in Z\Leftrightarrow2b+1\in Z;2b+1\inƯ\left(10\right)\)
Xét ước là ra..
b, \(\dfrac{a}{4}-\dfrac{1}{2}=\dfrac{3}{b}\)
\(\Leftrightarrow\dfrac{a}{4}-\dfrac{2}{4}=\dfrac{3}{b}\)
\(\Leftrightarrow\dfrac{a-2}{4}=\dfrac{3}{b}\)
\(\Leftrightarrow\left(a-2\right)b=12\)
Vì \(a,b\in Z\Leftrightarrow a-2\in Z;a-2;b\inƯ\left(12\right)\)
Xét ước là ra
\(a,\dfrac{b}{5}+\dfrac{1}{10}=\dfrac{1}{a}\)
\(\dfrac{\left(2b+1\right)a}{10a}=\dfrac{10}{10a}\)
\(\text{2ab+a=10}\)
\(\text{a(2b+1)=10}\)
Vì \(\text{a(2b+1)=10}\)nên a và 2b+1 là ước nguyên của 10
=>a;2b+1 thuộc{-10;-5;-2;-1;1;2;5;10}
Lập bảng giá trị
a | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
2b+1 | -1 | -2 | -5 | -10 | 10 | 5 | 2 | 1 |
b | -2 | \(-\dfrac{3}{2}\) | -3 | \(-\dfrac{11}{2}\) | \(\dfrac{9}{2}\) | 2 | \(\dfrac{1}{2}\) | 0 |
Đối chiếu | Chọn | Loại | Chọn | Loại | Loại | Chọn | Loại | Chọn |
Vậy
C1:
\(A=\dfrac{10^{50}+2}{10^{50}-1}=\dfrac{10^{50}-1}{10^{50}-1}+\dfrac{3}{10^{50}-1}=1+\dfrac{3}{10^{50}-1}\\ B=\dfrac{10^{50}}{10^{50}-3}=\dfrac{10^{50}-3}{10^{50}-3}+\dfrac{3}{10^{50}-3}=1+\dfrac{3}{10^{50}-3}\\ \text{Vì }10^{50}-3< 10^{50}-1\Rightarrow\dfrac{3}{10^{50}-3}>\dfrac{3}{10^{50}-1}\Rightarrow1+\dfrac{3}{10^{50}-3}>1+\dfrac{3}{10^{50}-1}\Leftrightarrow B>A\)
Vậy \(B>A\)
C2: Áp dụng \(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\left(n>0\right)\)
Dễ thấy
\(B=\dfrac{10^{50}}{10^{50}-3}>1\\ \Rightarrow B=\dfrac{10^{50}}{10^{50}-3}>\dfrac{10^{50}+2}{10^{50}-3+2}=\dfrac{10^{50}+2}{10^{50}-1}=A\)
Vậy \(B>A\)
Lời giải:
Áp dụng bất đẳng thức AM-GM:
\(a^2+2=(a^2+1)+1\geq 2\sqrt{a^2+1}\)
Do đó mà \(\frac{a^2+2}{\sqrt{a^2+1}}\geq \frac{2\sqrt{a^2+1}}{\sqrt{a^2+1}}=2\) (đpcm)
Dấu bằng xảy ra khi \(a^2+1=1\Leftrightarrow a=0\)
Ta có : \(0< \alpha< \dfrac{\pi}{2}\)
=> \(\sin\alpha>0,\cos\alpha>\text{0},\tan\alpha>\text{0},\cot\alpha>\text{0}\)
a, Ta có : \(\sin\left(\alpha-\pi\right)=-\sin\left(\pi-\alpha\right)=-\left[-\sin\left(\alpha\right)\right]=\sin\alpha\)
=> \(sin\left(\alpha-\pi\right)>\text{0}\)
b, \(\cos\left(\dfrac{3\pi}{2}-\alpha\right)=\cos\left(\pi+\dfrac{\pi}{2}-\alpha\right)=-\cos\left(\dfrac{\pi}{2}-\alpha\right)=-sin\alpha\)
=> \(\cos\left(\dfrac{3\pi}{2}-\alpha\right)< \text{0}\)
c, \(tan\left(\alpha+\pi\right)=tan\alpha\)
=> \(tan\left(\alpha+\pi\right)>\text{0}\)
d, \(cot\left(\alpha+\dfrac{\pi}{2}\right)=-tan\alpha\)
=> \(cot\left(\alpha+\dfrac{\pi}{2}\right)< \text{0}\)
\(a+b+c=0\Rightarrow b+c=-a\)
\(\Rightarrow\left(b+c\right)^2=a^2\) \(\Rightarrow b^2+c^2+2bc=a^2\)
\(\Rightarrow a^2-b^2-c^2=2bc\)
Tương tự: \(b^2-c^2-a^2=2ca\) ; \(c^2-a^2-b^2=2ab\)
Mặt khác ta có:
\(a+b+c=0\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)
Đặt vế trái biểu thức cần chứng minh là P
\(\Rightarrow P=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ca}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}=\dfrac{3abc}{2abc}=\dfrac{3}{2}\) (đpcm)