Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\\ b,\Delta MAB=\Delta MDC\\ \Rightarrow\widehat{MCD}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(AB\text{//}CD\)
\(c,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAC=\Delta MDB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{MCA}=\widehat{MBD}\)
Mà 2 góc này ở vị trí slt nên \(AC\text{//}BD\Rightarrow BD\bot AB\)
\(\left\{{}\begin{matrix}AC=BD\\\widehat{BAC}=\widehat{ABD}=90^0\\AB\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.g.c\right)\\ \Rightarrow BC=AD\\ d,MF\bot BD\Rightarrow MF\text{//}AB\\ BC=AD\\ \Rightarrow AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BM=MC\\ \Rightarrow\Delta AME\text{ cân tại }E\)
Mà ME là trung tuyến nên cũng là đường cao
Do đó \(ME\bot AC\Rightarrow ME\text{//}AB\)
Mà \(MF\text{//}AB\Rightarrow ME\equiv MF\)
Vậy M,E,F thẳng hàng
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
b: Sửa đề: AB//EC
Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CE
c: Ta có: AB//CE
AB\(\perp\)AC
Do đó: CE\(\perp\)CA
Xét ΔECA vuông tại C và ΔBAC vuông tại A có
EC=BA
AC chung
Do đó: ΔECA=ΔBAC
=>EA=BC
Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó ΔMAC=ΔMEB
=>AC=BE
Xét ΔBEC và ΔCAB có
BE=CA
EC=AB
BC chung
Do đó: ΔBEC=ΔCAB
=>\(\widehat{BEC}=\widehat{CAB}=90^0\)
=>ΔBEC vuông tại E
a: \(AC=\sqrt{15^2-9^2}=12\left(cm\right)\)
b: XétΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
b: Xét tứ giác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//EC
a: Xét ΔMAB và ΔMEC có
MA=ME
\(\widehat{AMB}=\widehat{EMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMEC
b: Ta có: ΔMAB=ΔMEC
=>\(\widehat{MAB}=\widehat{MEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//EC
c: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//BE
Ta có: AB//EC
AB\(\perp\)AC
Do đó: EC\(\perp\)AC
Ta có: AC//BE
AC\(\perp\)EC
Do đó: BE\(\perp\)EC
=>ΔBEC vuông tại E