Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có:ΔABC vuông tại B
=>\(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(\widehat{BAC}+50^0=90^0\)
=>\(\widehat{BAC}=40^0\)
b: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
c: Xét ΔFAB vuông tại A và ΔEBA vuông tại B có
AB chung
\(\widehat{FBA}=\widehat{EAB}\)(hai góc so le trong, FB//AE)
Do đó: ΔFAB=ΔEBA
d: Sửa đề: I là trung điểm của BA
Xét tứ giác AFBE có
AF//BE
AE//BF
Do đó: AFBE là hình bình hành
=>AB cắt FE tại trung điểm của mỗi đường
mà I là trung điểm của AB
nên I là trung điểm của FE
=>F,I,E thẳng hàng
Ta có : AD = AC
\(\Rightarrow\)\(\Delta\)ADC vuông cân tại A
\(\Rightarrow\)Góc ACD = ( 180° - CÂD ) ÷ 2
\(\Rightarrow\)Góc ACD = ( 180° - 90° ) ÷ 2
\(\Rightarrow\)Góc ACD = 45°
Vậy : Góc ACD = 45°
=( bn nói có vẻ khinh người quá đấy, bài này cả olm ko ai làm đc :V há há-thế giới của bn nhỏ thật >:
a) \(\Delta ABHcó: \widehat{A}+\widehat{B}+\widehat{H}=180^o\)
\(\text{mà }\widehat{B}=60^o,\widehat{H}=90^o\Rightarrow\widehat{A}=30^o\text{hay}\widehat{HAB}=30^o\)
b) xét tam giác KDA và tam giác KHA, ta có:
AK là cạnh chung
AH=AD(gt)
DAK=KAH(gt)
=> tam giác KDA = tam giác KHA(c.g.c)
=> KH=KD( cặp cạnh tương ứng)
c) câu c sai đề, ib vs mk lại đề đi-rồi giải tiếp cho =)
Bạn tự vẽ hình nha ^^
a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có
\(AB=EB\left(GT\right)\)(1)
\(\widehat{BAD}=\widehat{BED}=90^o\)(2)
\(BD:\)Cạnh chung (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )
b)
---Theo đề bài ta có :
\(AB=EB\left(GT\right)\)(1)
và \(\widehat{ABC}=60^o\left(gt\right)\)(2)
Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều (đpcm)
--- Vì \(\Delta ABE\)đều
\(\Rightarrow AB=BE=AE\)
Mà \(AB=6cm\)(gt)
...\(AE=EC\)
\(\Rightarrow EC=6cm\)
mà \(BE=6cm\)
Có \(EC+BE=BC\)
\(\Rightarrow6+6=12cm\)
Vậy BC =12cm
a) Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{ABC}=90^0-\widehat{ACB}=90^0-30^0\)
hay \(\widehat{ABC}=60^0\)
Ta có: ΔAHB vuông tại A(AH⊥BC)
nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)
\(\Leftrightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-60^0=30^0\)
Ta có: tia AH nằm giữa hai tia AB,AC
nên \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)
hay \(30^0+\widehat{CAH}=90^0\)
\(\Leftrightarrow\widehat{CAH}=60^0\)
Ta có: AD là tia phân giác của \(\widehat{CAH}\)(gt)
nên \(\widehat{DAC}=\dfrac{\widehat{CAH}}{2}=\dfrac{60^0}{2}=30^0\)
Vậy: \(\widehat{ABC}=60^0\); \(\widehat{DAC}=30^0\)
b) Xét ΔADH và ΔADE có
AH=AE(gt)
\(\widehat{HAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{HAE}\))
AD chung
Do đó: ΔADH=ΔADE(c-g-c)
⇒\(\widehat{AHD}=\widehat{AED}\)(hai góc tương ứng)
mà \(\widehat{AHD}=90^0\)(AH⊥HD)
nên \(\widehat{AED}=90^0\)
hay DE⊥AC(đpcm)
c) Ta có: ΔAHD=ΔAED(cmt)
nên HD=ED(hai cạnh tương ứng)
Xét ΔFHD vuông tại H và ΔCED vuông tại E có
FH=CE(gt)
HD=ED(cmt)
Do đó: ΔFHD=ΔCED(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{FDH}=\widehat{CDE}\)(hai góc tương ứng)
mà \(\widehat{CDE}+\widehat{HDE}=180^0\)(hai góc kề bù)
nên \(\widehat{FDH}+\widehat{EDH}=180^0\)
⇒\(\widehat{FDE}=180^0\)
hay F,D,E thẳng hàng(đpcm)
Xét tam giác ABC vuông tại B :
\(\widehat{C}+\widehat{A}=90^o\)
mà \(\widehat{C}=40^o\)
=> \(40^o+\widehat{A}=90^o\)
=>\(\widehat{A}=50^o\)
b)
Xét tam giác ABE và tam gíac ADE
AB=AD(gt)
^BAE=^DAE ( gt)
AE-cạnh chung
=> ∆ABE=∆ADE
c) vì ∆ABE=∆ADE
=> BE=DE ( 2 c tứ)