Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tự kẻ hình
a) xét tam giác ABE và tam giác DBE có
BE chung
B1=B2(gt)
BAE=BDE(=90 độ)
=> tam giác ABE= tam giác DBE(ch-gnh)
=> AB=BD( hai cạnh tương ứng)
đặt O là giao điểm của AD và BE
xét tam giác ABO và tam giác DBO có
B1=B2(gt)
AB=BD(cmt)
BO chung
=> tam giác ABO= tam giác DBO(cgc)
=> AO=DO( hai cạnh tương ứng)=> O là trung điểm của AD=> BO là trung tuyến
vì BO vừa là trung tuyến, vừa là tia phân giác của góc ABC=> BE là trung trực của AD
c) vì AB=BD=> tam giác ABD cân B, mà ABD= 60 độ=> ABD đều
=> ABD=BDA=DAB=60 độ
vì AH vuông góc với BC=> HAB+ABH= 90 độ=> HAB=90-60=30 độ
=> HAD+ADH=90 độ=> HAD=90-60=30 độ
xét tam giác BAH và tam giác DAH có
AH chung
AHB=AHD(=90 độ)
HAB=HAD(=30 độ)
=> tam giác BAH= tam giác DAH(gcg)
=> BH=DH( hai cạnh tương ứng)=>H là trung điểm của BD=> AH là trung tuyến của BD
vì AH giao BE tại I mà AH, BE là trung tuyến
=> I là trọng tâm của tam giác ABD => AI=2/3AH
vì H là trung điểm của BD mà BD=AB=> BH=6/2=3cm
ta có AH^2=AB^2-BH^2=> AH^2=6^2-3^2=> AH^2=25=> AH=5 (AH>0)
=> AI=2/3*5=10/3cm
phần b) không ghi rõ nên mik ko giải đc

Mình vẽ hình ko qen ak~~
a)
Xét \(\Delta BAD\)và\(\Delta BED\)có
\(\widehat{ABD}=\widehat{DBE\left(gt\right)}\)
\(BD:\)cạnh chung
=>\(\Delta BAD\)=\(\Delta BED\)(cạnh huyền -góc nhọn)
=> BA=BE(đpcm)
a,Xét hai tam giác vuông ABD và EBD có:
BD: cạnh chung
∠ABD=∠EBD (do BD là phân giác góc B)
Suy ra ΔABD=ΔEBD (cạnh huyền- góc nhọn)
Do đó, BA=BE (2 cạnh tương ứng)
b,
Từ phần a suy ra DA=DE (2 cạnh tương ứng)
Xét hai tam giác ADK và EDC có:
∠DAK=∠DEC= 90 độ
DA=DE (chứng minh trên)
∠ADK=∠EDC (2 góc đối đỉnh)
Do đó, ΔADK=ΔEDC (g.c.g)
Suy ra DC = DK (2 cạnh tương ứng)

a) cho ac rùi tính ac làm j nữa z bạn
b)xét tam giác abd vuông tại a và tam giác ebd vuông tại e có
bd chung
góc abd = góc ebd ( bd là tia phân giác của góc abc )
=> tam giác abd=tam giac ebd ( ch-gn)

A B C H E D
Có thể thấy rằng DC + DE = EC < BC mà BC < AB + AC (bất đẳng thức tam giác) nên AB + AC > DC + DE.
Đề sai rồi bạn.

a, xét tam giác ABD và tam giác EBD có : BD chung
góc ABD = góc EBD do BD là pg của góc ABC (gt)
góc DAB = góc DEB = 90
=> tam giác ABD = tam giác EBD (ch-gn)
=> BA = BE (đn)
b, đề sai sao ý

a) Xét ΔABD và ΔEBD:
+) AB = BE
+) DB chung
+) ˆABD=ˆEBDABD^=EBD^ (Vì BD là phân giác)
Suy ra: ΔABD=ΔEBD (c.g.c)
- Suy ra DA = DE và DE ⊥⊥ BC
Tam giác EDC có: EC > CD – DE = CD – DA
Suy ra BC – BA > CD – DA
Có AH // DE ⇒ˆHAE=ˆAED⇒HAE^=AED^ (SLT)
Tam giác ADE cân ⇒ˆDAE=ˆAED⇒DAE^=AED^
Suy ra AE là phân giác của ˆHAC^
Kẻ EF ⊥ AC ⇒⇒ ΔAHE=ΔAFE (1)
Tam giác EFC vuông tại F ⇒ EC > EF (2)
Từ (1) và (2) ⇒ EC > HE.
P/s : hình thì tự vẽ :v

Cho tam giác ABC vuông tại A, có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: HB < AH < HC.
b) Tia phân giác góc BAH cắt BC tại D. Qua C kẻ đường thẳng vuông góc với AD và cắt AD tại I.
Chứng minh: CI là tia phân giác của góc ACB.
c) Tia phân giác góc ADC cắt CI tại K, từ K vẽ KE vuông góc với BC (K thuộc BC).
Chứng minh: ID + IC > KE+ DC.
Câu hỏi tương tự Đọc thêm
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
=>BA=BE
b: Ta có: ΔBAD=ΔBED
=>DA=DE
mà DE<DC(ΔDEC vuông tại E)
nên DA<DC
c: Ta có: ΔBAD=ΔBED
=>BA=BE
mà BA>BH(ΔBAH vuông tại H)
nên BE>BH
mà BC>BE
nên BC>BE>BH
giúp mình vẽ hình đi ạ