Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O E D 1 2 1 2
Giải:
a) Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)
Xét \(\Delta EBC\) có: \(\widehat{B}+\widehat{C_1}=90^o\) ( do \(\widehat{BEO}=90^o\) )
Xét \(\Delta DBC\) có: \(\widehat{C}+\widehat{B_1}=90^o\) ( do \(\widehat{CDB}=90^o\) )
Mà \(\widehat{B}=\widehat{C}\Rightarrow\widehat{B_1}=\widehat{C_1}\) (*)
Xét \(\Delta EBC,\Delta DBC\) có:
\(\widehat{B}=\widehat{C}\)
\(BC\): cạnh chung
\(\widehat{B_1}=\widehat{C_1}\) ( theo (*) )
\(\Rightarrow\Delta EBC=\Delta DBC\left(g-c-g\right)\)
\(\Rightarrow BD=CE\) ( cạnh t/ứng ) ( đpcm )
\(\Rightarrow BE=CD\) ( cạnh t/ứng )
b) Ta có: \(\widehat{B}=\widehat{C}\)
\(\widehat{B_1}=\widehat{C_1}\)
\(\Rightarrow\widehat{B}-\widehat{B_1}=\widehat{C}-\widehat{C_1}\)
\(\Rightarrow\widehat{B_2}=\widehat{C_2}\) (**)
Xét \(\Delta OBE,\Delta OCD\) có:
\(\widehat{BEO}=\widehat{CDO}\left(=90^o\right)\)
BE = CD ( theo phần a )
\(\widehat{B_2}=\widehat{C_2}\) ( theo (**) )
\(\Rightarrow\Delta OBE=\Delta OCD\left(g-c-g\right)\) ( đpcm )
a) Áp dụng định lí Py Ta go cho tam giác ABC vuông tại A ta có:
BC2 = BA2 + CA2
= 62 + 82 = 100
Vậy BC = \(\sqrt{100}=10cm\)
b) Đặt Trung trực của BC cắt BC tại I
Xét tam giác BDI và tam giác CDI có:
ID chung
IB = IC
Góc BID = góc CID
Vậy tam giác BDI = tam giác CDI (c - g - c)
=> Góc DBC = DCB (2 góc tương ứng)
A B C D E I
c. ta có tam giác ECD cân tại D => góc DEC= góc DCE = (180 - góc ADC): 2 (1)
ta lại có góc BDI + góc IDC + CDE = 180 độ
=> góc BDI + góc IDC = 180- góc CDE
mà theo câu b ta có Góc BDI= góc ICD
nên ta có góc BDI= góc IDC= (180- góc CDE):2 (2)
từ (1) và (2) => góc BDI = góc DEC mà 2 góc này ở vị trí đồng vị nên EC// DI
mà DI vuong góc với BC => EC vuông góc với BC nên tgiac BCE vuông
d)
ta có: tam giác BAD=BED(CH-GN)=> AD=DE
xét tam giác FAD và tam giác CED có:
AF=CE(gt)
FAD=DEC=90
AD=DE(tam giác BAD=BED)
=> tam giác FAD=CED(c.g.c)
=> ADF=EDC
=> F;D;E thẳng hàng
Bạn tự vẽ hình nha
a.
Xét tam giác ABD và tam giác EBD có:
BD là cạnh chung
DBA = DBE (BD là tia phân giác của ABE)
=> Tam giác ABD = Tam giác EBD (cạnh huyền - góc nhọn)
b.
- AB = EB (tam giác ABD = tam giác EBD) => B thuộc đường trung trực của AE
- AD = ED (tam giác ABD = tam giác EBD) => D thuộc đường trung trực của AE
=> BD là đường trung trực của AE
c.
Xét tam giác ADF và tam giác EDC có:
FAD = CED ( = 900 )
AD = ED (tam giác ABD = tam giác EBD)
FDA = CDE (2 góc đối đỉnh)
=> Tam giác ADF = Tam giác EDC (g.c.g)
Tam giác ADF vuông tại A
=> FD là cạnh lớn nhất
=> AD < FD
mà FD = CD (tam giác ADF = Tam giác EDC)
=> AD < CD
d.
ADE + EDC = 1800 (2 góc kề bù)
mà EDC = ADF (tam giác ADF = tam giác EDC)
=> ADE + ADF = 1800
=> ADE và ADF là 2 góc kề bù
=> DE và DF là 2 tia đối nhau
=> D , E , F thẳng hàng
Chúc bạn học tốt
xét tam giác AKB và tam giác AKC có
AK=CK (GT)
AB=AC (GT)
BK CẠNH CHUNG
VẬY TAM GIÁC AKB =TAM GIÁC AKC(C C C)
a Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
b: Ta có: ΔABD cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
A B C E D F 1 2
a) Vì BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
Nên AB2 + AC2 = BC2
Do đó: \(\Delta ABC\) vuông tại A
b) Xét hai tam giác vuông ABD và EBD có:
BD: cạnh huyền chung
\(\widehat{B_1}=\widehat{B_2}\left(gt\right)\)
Vậy: \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)
Suy ra: DA = DE (hai cạnh tương ứng)
c) \(\Delta DAF\) vuông tại A
=> DF > DA (đường vuông góc ngắn hơn đường xiên)
Mà DA = DE
Do đó: DF > DE (đpcm)
d) Xét hai tam giác vuông ABC và EBF có:
AB = EB (\(\Delta ABD=\Delta EBD\))
\(\widehat{B}\): góc chung
Vậy: \(\Delta ABC=\Delta EBF\left(cgv-gn\right)\)
\(\Rightarrow\) BF = BC (hai cạnh tương ứng)
\(\Rightarrow\) \(\Delta BFC\) cân tại B
\(\Rightarrow\) BD là đường phân giác đồng thời là đường trung trực của FC
Do đó: BD là đường trung trực của đoạn thẳng FC (đpcm).
a) Ta có :
\(6^2+8^2=10^2\\ \Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A ( Định lí Pi-ta-go đảo )
b) Xét \(\Delta DBA\) và \(\Delta DBE\),có :
Chung cạnh BD
\(\widehat{DBA}=\widehat{DBE}\)( BD là tia phân giác )
\(\Rightarrow\Delta BDA=\Delta BDE\left(ch-gn\right)\\ \Rightarrow DA=DE\)
Có lẽ câu mà cậu chưa làm được là c nhưng rất tiếc là tớ đang trong tình trạng suy nghĩ :v
a)
*) Ta có: \(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=90^o+\widehat{BAC}=\widehat{EAC}+\widehat{BAC}=\widehat{EAB}\)
Xét tam giác DAC và tam giác BAE
DA=BA
\(\widehat{DAC}=\widehat{BAE}\)
AC=AE
=> \(\Delta DAC=\Delta BAE\left(c.g.c\right)\) => DC=BE (cạnh tương ứng) và \(\widehat{E_1}=\widehat{C_1}\) (góc tương ứng)
*) Trong tam giác ANE có: \(90^o+\widehat{E_1}+\widehat{N_1}=180^o\) (1)
*) Trong tam giác TNC có: \(\widehat{NTC}+\widehat{C_1}+\widehat{N_2}=180^o\) (2)
Từ 1 và 2 => \(90^o+\widehat{E_1}+\widehat{N_1}=\widehat{NTC}+\widehat{C_1}+\widehat{N_2}\) Mà \(\widehat{E_1}=\widehat{C_1}\) và \(\widehat{N_1}=\widehat{N_2}\) (Góc đối đỉnh)
=> \(\widehat{NTC}=90^o\)
b) Do tam giác DTB là tam giác vuông. Áp dụng định lý Py-ta-go, ta có:\(DB^2=DT^2+BT^2\) (1)
Và tam giác TEC cũng là tam giác vuông => \(EC^2=ET^2+TC^2\) (2)
Từ 1 và 2 => \(DB^2+EC^2=DT^2+BT^2+ET^2+TC^2=\left(TB^2+TC^2\right)+\left(TD^2+TE^2\right)=DE^2+BC^2\)
Câu c thì bạn chỉ cần vẽ thêm 1 đường vuông góc với cạnh đối điện rồi làm thôi .....
tự vẽ hình
a)Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
AB2+AC2=BC2
=>BC2=62+82
=>BC2=100
=>BC=10 (cm)
b)Xét tam giác ABD vuông tại A và tam giác EBD vuông tai E có:
BD : cạnh chung
góc ABD=góc EBD (BD là p/g của góc ABC)
Suy ra: tam giác ABD= tam giác EBD
c)Ta có AC là đường cao thứ nhất của tam giác BFC
FE là đường cao thứ 2 của tam giác BFC
Mà AC và FE cắt nhau tại D nên D là trực tâm
=>BD là đường cao thứ 3 của tam giác BFC
Mà BD cũng là đường p/g của tam giác BFC nên: tam giác BFC cân ở B
Mà góc FBC=60o(gt)
nên: tam giác FBC đều