K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2023

loading... 

a) Tứ giác ADME có:

∠AEM = ∠ADM = ∠EAD = 90⁰ (gt)

⇒ ADME là hình chữ nhật

b) Do HI = HA (gt)

⇒ H là trung điểm của AI

Do HK = HB (gt)

⇒ H là trung điểm của BK

Tứ giác ABIK có:

H là trung điểm của AI (cmt)

H là trung điểm của BK (cmt)

⇒ ABIK là hình bình hành

⇒ IK // AB

Mà AB ⊥ AC (∆ABC vuông tại A)

⇒ IK ⊥ AC

⇒ IK là đường cao của ∆ACI

Lại có:

AH ⊥ BC (do AH là đường cao của ∆ABC)

⇒ CH ⊥ AI

⇒ CH là đường cao thứ hai của ∆ACI

∆ACI có:

IK là đường cao (cmt)

CH là đường cao (cmt)

⇒ AK là đường cao thứ ba của ∆ACI

⇒ AK ⊥ IC

22 tháng 10 2023

a: Xét tứ giác ADME có

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

=>ADME là hình chữ nhật

b: Xét tứ giác ABKI có

M là trung điểm chung của AK và BI

Do đó: ABKI là hình bình hành

=>KI//AB

mà AB\(\perp\)AC

nên KI\(\perp\)AC

Xét ΔCAI có

IK,CH là đường cao

IK cắt CH tại K

Do đó: K là trực tâm của ΔCAI

=>AK\(\perp\)IC

a: Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

b: Xét tứ giác ABDK có

H là trung điểm chung của AD và BK

=>ABDK là hình bình hành

Hình bình hành ABDK có AD\(\perp\)BK

nên ABDK là hình thoi

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

b: ADME là hình chữ nhật

=>AM cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của AM

=>A,I,M thẳng hàng

c: Xét ΔBMP có

BD vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔBMP cân tại B

=>BA là phân giác của góc MBP

Xét ΔAMP có

AD là đường cao, là đường trung tuyến

Do đó: ΔAMP cân tại A

=>AB là phân giác của góc MAP(1)

Xét ΔAMQ có

AC vừa là đường cao, vừa là đường trung tuyến

Do đó; ΔAMQ cân tại A

=>AC là phân giác của góc MAQ(2)

Từ (1), (2) suy ra góc PAQ=2*góc BAC=180 độ

=>P,A,Q thẳng hàng

Xét ΔAMB và ΔAPB có

AM=AP

AB chung

BM=BP

Do đó: ΔAMB=ΔAPB

=>góc AMB=góc APB

Xét ΔAMC và ΔAQC có

AM=AQ

góc MAC=góc QAC

AC chung

Do đó: ΔAMC=ΔAQC

=>góc AMC=góc AQC

=>góc AQC+góc AMB=180 độ

mà góc AMB=góc APB

nên góc AQC+góc APB=180 độ

=>BP//QC

=>BPQC là hình thang

d: AM=AP

AM=AQ

Do đó: AP=AQ

mà P,A,Q thẳng hàng

nên A là trung điểm của PQ

a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

Do đó: ADME là hình chữ nhật

b:ADME là hình chữ nhật

=>AM cắt DE tại trung điểm của mỗi đường

mà I là trung điểm của DE

nên I là trung điểm của AM

=>A,I,M thẳng hàng

c: Xét ΔAMQ có

AE vừa là đường cao, vừa là trung tuyến

=>ΔAMQ cân tại A

=>AE là phân giác của góc MAQ(1)

Xét ΔAMP có

AD vừa là đường cao, vừa là trung tuyến

=>ΔAMP cân tại A

=>AD là phân giác của góc MAP(2)

Từ (1), (2) suy ra góc PAQ=góc MAP+góc MAQ

=2(góc BAM+góc CAM)

=2*góc BAC

=180 độ

=>P,A,Q thẳng hàng

mà AP=AQ=AM

nên A là trung điểm của PQ

18 tháng 12 2022

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc BAC=90 độ

Do đó: ABDC là hình chữ nhật

b: XétΔAID có AH/AI=AM/AD

nên HM//DI

=>DI vuông góc với IA

=>HMDI là hình thang vuông

c:A đối xứng I qua BC

nên CA=CI=BD

Xét tứ giác DIBC có

DI//BC

DB=IC

Do đó: DIBC là hình thang cân

17 tháng 12 2023

a: Xét tứ giác AEDF có

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

=>AEDF là hình chữ nhật

b: Xét ΔABC có

D là trung điểm của BC

DE//AC
Do đó; E là trung điểm của AB

Xét ΔBAC có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của AC

Xét tứ giác ADBM có

E là trung điểm chung của AB và DM

=>ADBM là hình bình hành

c: Xét tứ giác ADCN có

F là trung điểm chung của AC và DN

=>ADCN là hình bình hành

=>AN//CD và AN=CD

Ta có: ADBM là hình bình hành

=>AM//BD và AM=BD

Ta có: AN//CD

AM//BD

mà B,D,C thẳng hàng

nên AN//BC và AM//BC

mà AN,AM có điểm chung là A

nên N,A,M thẳng hàng

Ta có: AM=BD

AN=CD

mà BD=DC

nên AM=AN

mà M,A,N thẳng hàng

nên A là trung điểm của MN

17 tháng 12 2023

cảm ơn bạn

29 tháng 12 2020

giúp mh vs ạ mai mh thi r