K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔDAF=ΔDEC

Suy ra: DF=DC và AF=EC
Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BF=BC

mà DF=DC

nên BD là đường trung trực của CF

loading...  loading...  

3 tháng 8 2021

undefined

Xét ΔBAD và ΔBDE có:

BD là cạnh chung

B1=B2 (BD là tia phân giác của \(\widehat{B}\))

BA = BE (GT)

Nên ΔBAD= ΔBDE (c.g.c)

=>\(\widehat{ADB}=\widehat{BDE}\)

Ta có:\(\widehat{ADB}+\widehat{ADF}=\widehat{BDF}\)

         \(\widehat{BDE}+\widehat{EDC}=\widehat{BDC}\)

Mà :\(\widehat{ADB}=\widehat{BDE}\)(CMT)

        \(\widehat{ADF}=\widehat{EDC}\)( 2 góc đối đỉnh)

=>\(\widehat{BDF}=\widehat{BDC}\)

Xét ΔBDF và Δ BDC, có:

\(\widehat{BDF}=\widehat{BDC}\)

BD là cạnh chung

B1=B2

Nên ΔBDF=ΔBDC (g.c.g)

=>DC = DF

b)Ta có:ΔEDC vuông tại E=> DC là cạnh lớn nhất hay DC>DE

MÀ DE=AD (ΔBAD và ΔBDE)

=> AD< DC

 

3 tháng 8 2021

c) Ta có BE=BA=>ΔBEA cân tại B

Mà BD là tia phân giác=>BD là đường trung trực

Vì :ΔBDF=ΔBDC=>BF=BC 

=>ΔBFC cân tại B=>\(\widehat{C}=\widehat{F}\)

Ta có:\(\widehat{B}+\widehat{C}+\widehat{F}=180^o\)

=>\(\widehat{B}+\widehat{C}.2=180^O\)

=>\(\widehat{C}=\dfrac{180^O-\widehat{B}}{2}\)(1)

vÌ ΔBAE  cân tại B

Tương tự ta có:

\(\widehat{E}=\dfrac{180^o-\widehat{B}}{2}\)(2)

Từ (1) và (2)=> \(\widehat{E}=\widehat{C}\)

Mà 2 góc này ở vị trí đồng vị=>AE // FC

7 tháng 8 2017

b. Ta có AB = BE ⇒ B nằm trên đường trung trực của AE (0.5 điểm)

Do ∆ABD = ∆EBD nên AD = DE (hai cạnh tương ứng)

⇒ D nằm trên đường trung trực của AE

Vậy BD là đường trung trực của AE (0.5 điểm)

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE

20 tháng 3 2021

a) Ta có: BC2=102=100

AB2+AC2=62+82=100

Do đó: BC2=AB2+AC2(=100)

Xét ΔABC có BC2=AB2+AC2(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

b) Xét ΔBAD vuông tại A và ΔBED vuông tại E có 

BD chung

ABD^=EBD^(BD là tia phân giác của ABE^)

Do đó: ΔBAD=ΔBED(cạnh huyền-góc nhọn)

Suy ra: DA=DE(Hai cạnh tương ứng)

Xét ΔADF vuông tại A và ΔEDC vuông tại E có 

DA=DE(Cmt)

ADF^=EDC^(hai góc đối đỉnh)

Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)

Suy ra: DF=DC(Hai cạnh tương ứng)

Xét ΔDFC có DF=DC(cmt)

nên ΔDFC cân tại D(Định nghĩa tam giác cân)

a: XétΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

hay ΔDFC cân tại D

b: Ta có: DE=DA

mà DA<DF

nên DE<DF