K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: E đối xứng M qua AB

nên AB là trung trực của ME

=>AB vuông góc với ME tại trung điểm của ME

=>AB là phân giác của góc EAM(1)

E đối xứng N qua AC

nên AC là trung trực của NE

=>AC vuông góc với NE tại trung điểm của NE

=>AC là phân giác của góc EAN(2)

Xét tứ giác AIEK có

góc AIE=góc AKE=góc KAI=90 độ

nên AIEK làhình chữ nhật

b: Từ (1), (2) suy ra góc NAM=2*90=180 độ

=>N,A,M thẳng hàng

mà AM=AN

nên A là trung điểm của MN

23 tháng 11 2023

Sửa đề: K là điểm đối xứng của M qua AC

a: M đối xứng H qua AB

=>AB là đường trung trực của MH

=>AB vuông góc MH tại trung điểm của MH

=>AB vuông góc MH tại E và E là trung điểm của MH

M đối xứng K qua AC

=>AC là đường trung trực của MK

=>AC vuông góc với MK tại trung điểm của MK

=>AC vuông góc với MK tại F và F là trung điểm của MK

ME\(\perp\)AB

AC\(\perp\)AB

Do đó: ME//AC

MF\(\perp\)AC

AB\(\perp\)AC

Do đó: MF//AB

Xét ΔABC có

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét tứ giác AEMF có

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

=>AEMF là hình chữ nhật

Xét tứ giác AMBH có

E là trung điểm của AB và MH

Do đó: AMBH là hình bình hành

Hình bình hành AMBH có MH\(\perp\)AB

nên AMBH là hình thoi

Xét tứ giác AMCK có

F là trung điểm chung của AC và MK

=>AMCK là hình bình hành

Hình bình hành AMCK có AC\(\perp\)MK

nên AMCK là hình thoi

b: AMBH là hình thoi

=>AB là phân giác của góc MAH

=>\(\widehat{MAH}=2\cdot\widehat{BAM}\)

AMCK là hình thoi

=>AC là phân giác của góc MAK

=>\(\widehat{MAK}=2\cdot\widehat{MAC}\)

\(\widehat{MAH}+\widehat{MAK}=\widehat{KAH}\)

=>\(\widehat{KAH}=2\cdot\left(\widehat{MAB}+\widehat{MAC}\right)\)

=>\(\widehat{KAH}=2\cdot90^0=180^0\)

Do đó: K,A,H thẳng hàng

mà AH=AK(=AM)

nên A là trung điểm của HK

c: Để hình chữ nhật AEMF trở thành hình vuông thì AE=AF

mà \(AE=\dfrac{AB}{2};AF=\dfrac{AC}{2}\)

nên AB=AC

a: Ta có: H và M đối xứng nhau qua AB

nên AB là đường trung trực của HM

Suy ra: AB\(\perp\)HM và E là trung điểm của HM

Ta có: M và K đối xứng nhau qua AC

nên AC là đường trung trực của MK

Suy ra: AC\(\perp\)MK và F là trung điểm của MK

Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{EAF}=90^0\)

Do đó: AEMF là hình chữ nhật

Xét ΔABC có 

M là trung điểm của BC

ME//AC

Do đó: E là trung điểm của AB

Xét ΔABC có 

M là trung điểm của BC

MF//AB

Do đó: F là trung điểm của AC

Xét tứ giác AMBH có 

E là trung điểm của đường chéo MH

E là trung điểm của đường chéo AB

Do đó: AMBH là hình bình hành

mà MH\(\perp\)AB

nên AMBH là hình thoi

Xét tứ giác AMCK có

F là trung điểm của đường chéo MK

F là trung điểm của đường chéo AC

Do đó: AMCK là hình bình hành

mà AC\(\perp\)MK

nên AMCK là hình thoi

22 tháng 9 2021

còn câu b) và c) nữa ạ

 

18 tháng 12 2020

undefined

18 tháng 12 2020

Ai giúp mik vs

24 tháng 12 2021

a: Xét tứ giác AEMF có 

\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)

Do đó: AEMF là hình chữ nhật

a: M đối xứng E qua AB

=>AB là đường trung trực của ME

=>AB\(\perp\)ME tại I và I là trung điểm của ME

Ta có: M đối xứng F qua AC

=>AC là đường trung trực của MF

=>AC\(\perp\)MF tại K và K là trung điểm của MF

Xét tứ giác AIMK có

\(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)

=>AIMK là hình chữ nhật

b: Ta có: AKMI là hình chữ nhật

=>AK//MI và AK=MI; KM//AI và KM=AI

Ta có: MI//AK

I\(\in\)ME

Do đó: IE//AK

Ta có: AK=IM

IM=IE

Do đó: AK=IE

Ta có: AI=MK

MK=KF

Do đó: AI=KF

Ta có: AI//MK

K\(\in\)MF

Do đó: AI//KF

Xét tứ giác AKIE có

AK//IE

AK=IE

Do đó: AKIE là hình bình hành

=>KI//AE và KI=AE

Xét tứ giác AIKF có

AI//KF

AI=KF

Do đó: AIKF là hình bình hành

=>KI//AF và KI=AF

Ta có: KI//AF

KI//AE

AE,AF có điểm chung là A

Do đó: E,A,F thẳng hàng

Ta có: KI=AE

KI=AF

Do đó: AE=AF

mà E,A,F thẳng hàng

nên A là trung điểm của EF