Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Ta có:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)
\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)
Mà: \(sinN=\dfrac{MN}{NP}\)
\(\Rightarrow sin37^o=\dfrac{MN}{25}\)
\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)
Áp dung định lý Py-ta-go ta có:
\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
3:
a: Xét ΔABC có AC^2=BA^2+BC^2
nên ΔBAC vuông tại B
b: Xét ΔBAC vuông tại B có
sin A=BC/AC=42/58=21/29
cos A=AB/AC=40/58=20/29
tan A=BC/BA=21/20
cot A=BA/BC=20/21
c: Xét ΔABC vuông tại B có BH là đường cao
nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA
=>BH*58=40*42=1680
=>BH=840/29(cm)
BA^2=AH*AC
=>AH=BA^2/AC=40^2/58=800/29cm
CB^2=CH*CA
=>CH=CB^2/CA=42^2/58=882/29(cm)
ΔBHA vuông tại H có HE là đường cao
nênBE*BA=BH^2
=>BE*40=(840/29)^2
=>BE=17640/841(cm)
ΔBHC vuông tại H có HF là đường cao
nênBF*BC=BH^2
=>BF*42=(840/29)^2
=>BF=16800/841(cm)
Xét tứ giác BEHF có
góc BEH=góc BFH=góc EBF=90 độ
=>BEHF là hình chữ nhật
=>góc BFE=góc BHE(=1/2*sđ cung BE)
=>góc BFE=góc BAC
Xét ΔBFE và ΔBAC có
góc BFE=góc BAC
góc FBE chung
Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2
=>S AECF=S ABC*(1-(420/841)^2)
=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot10=6^2=36\)
=>BH=36/10=3,6(cm)
XétΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(HE^2+HF^2=AH^2\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot BE=HE^2\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot FC=HF^2\)
\(AE\cdot BE+AF\cdot FC\)
\(=HE^2+HF^2\)
\(=AH^2\)
c: ΔABC vuông tại A
mà AI là đường trung tuyến
nên AI=BI=CI
IA=IC
=>ΔIAC cân tại I
=>\(\widehat{IAC}=\widehat{ICA}\)
=>\(\widehat{OAF}=\widehat{ACB}\)
AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABH}\)
=>\(\widehat{AFO}=\widehat{ABC}\)
\(\widehat{AFO}+\widehat{FAO}=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AO\(\perp\)OF tại O
=>AI\(\perp\)FE tại O
Xét ΔAEF vuông tại A có AO là đường cao
nên \(\dfrac{1}{AO^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
a: BC=BH+CH
=4+6
=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH=\sqrt{4\cdot6}=2\sqrt{6}\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AB=\sqrt{4\cdot10}=2\sqrt{10}\left(cm\right)\\AC=\sqrt{6\cdot10}=2\sqrt{15}\left(cm\right)\end{matrix}\right.\)
b: M là trung điểm của AC
=>\(AM=\dfrac{AC}{2}=\sqrt{15}\left(cm\right)\)
Xét ΔAMB vuông tại A có
\(tanAMB=\dfrac{AB}{AM}=\sqrt{\dfrac{2}{3}}\)
=>\(\widehat{AMB}\simeq39^0\)
c: ΔABM vuông tại A có AK là đường cao
nên \(BK\cdot BM=BA^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)
a) Ta có: BD là tia phân giác của \(\widehat{CBA}\)(gt)
nên \(\widehat{CBD}=\widehat{ABD}=\dfrac{120^0}{2}=60^0\)
Từ A kẻ đường thẳng song song với BD cắt BC tại E
Ta có: BD//AE(gt)
nên \(\widehat{CBD}=\widehat{BEA}\)(hai góc đồng vị) và \(\widehat{ABD}=\widehat{BAE}\)(hai góc so le trong)
mà \(\widehat{CBD}=\widehat{ABD}=60^0\)(cmt)
nên \(\widehat{BEA}=\widehat{BAE}=60^0\)
Xét ΔBEA có \(\widehat{BEA}=\widehat{BAE}=60^0\)(cmt)
nên ΔBEA đều(Dấu hiệu nhận biết tam giác đều)
\(\Leftrightarrow BA=BE=EA=6\left(cm\right)\)
\(\Leftrightarrow CE=CB+BE=12+6=18\left(cm\right)\)
Xét ΔCEA có BD//AE(gt)
nên \(\dfrac{BD}{AE}=\dfrac{CB}{CE}\)(Hệ quả của Định lí Ta lét)
\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{12}{18}=\dfrac{2}{3}\)
hay BD=4(cm)
b) Ta có: M là trung điểm của BC(gt)
nên \(MB=MC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét ΔBAM có BA=BM(=6cm)
nên ΔBAM cân tại B(Định nghĩa tam giác cân)
mà BD là đường phân giác ứng với cạnh AM(gt)
nên BD là đường cao ứng với cạnh AM(Định lí tam giác cân)
hay BD⊥AM(đpcm)
a: Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
=>\(AC^2+48^2=65^2\)
=>\(AC^2=65^2-48^2=1921\)
=>\(AC=\sqrt{1921}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{48}{65}\)
=>\(\widehat{C}\simeq47^036'\)
=>\(\widehat{B}\simeq42^024'\)
b: Xét ΔABC vuông tại A có AK là đường cao
nên \(AK\cdot BC=AB\cdot AC\)
=>\(AK\cdot65=48\cdot\sqrt{1921}\)
=>\(AK=\dfrac{48}{65}\cdot\sqrt{1921}\simeq32,37\left(cm\right)\)
ΔABC vuông tại A có AM là trung tuyến
nên AM=BC/2=32,5(cm)
ΔAKM vuông tại K
=>\(KA^2+KM^2=AM^2\)
=>\(KM=\sqrt{32.5^2-32.37^2}\simeq2,9\left(cm\right)\)
Xét ΔAKM vuông tại K có
\(sinMAK=\dfrac{MK}{AM}=\dfrac{2.9}{32.5}=\dfrac{29}{325}\)
\(cosMAK=\dfrac{AK}{AM}\simeq\dfrac{249}{250}\)
\(tanMAK=\dfrac{29}{325}:\dfrac{249}{250}=\dfrac{290}{3237}\)
\(cotMAK=1:\dfrac{290}{3237}=\dfrac{3237}{290}\)