Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
Ta có:
\(\widehat{M}+\widehat{N}+\widehat{P}=180^o\)
\(\Rightarrow\widehat{P}=180^o-90^o-37^o=53^o\)
Mà: \(sinN=\dfrac{MN}{NP}\)
\(\Rightarrow sin37^o=\dfrac{MN}{25}\)
\(\Rightarrow MN=25\cdot sin37^o\approx15\left(cm\right)\)
Áp dung định lý Py-ta-go ta có:
\(MP=\sqrt{NP^2-MN^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)
3:
a: Xét ΔABC có AC^2=BA^2+BC^2
nên ΔBAC vuông tại B
b: Xét ΔBAC vuông tại B có
sin A=BC/AC=42/58=21/29
cos A=AB/AC=40/58=20/29
tan A=BC/BA=21/20
cot A=BA/BC=20/21
c: Xét ΔABC vuông tại B có BH là đường cao
nên BH*AC=BA*BC; BA^2=AH*AC; CB^2=CH*CA
=>BH*58=40*42=1680
=>BH=840/29(cm)
BA^2=AH*AC
=>AH=BA^2/AC=40^2/58=800/29cm
CB^2=CH*CA
=>CH=CB^2/CA=42^2/58=882/29(cm)
ΔBHA vuông tại H có HE là đường cao
nênBE*BA=BH^2
=>BE*40=(840/29)^2
=>BE=17640/841(cm)
ΔBHC vuông tại H có HF là đường cao
nênBF*BC=BH^2
=>BF*42=(840/29)^2
=>BF=16800/841(cm)
Xét tứ giác BEHF có
góc BEH=góc BFH=góc EBF=90 độ
=>BEHF là hình chữ nhật
=>góc BFE=góc BHE(=1/2*sđ cung BE)
=>góc BFE=góc BAC
Xét ΔBFE và ΔBAC có
góc BFE=góc BAC
góc FBE chung
Do đó: ΔBFE đồng dạng với ΔBAC
=>S BFE/S BAC=(BF/BA)^2=(16800/441:40)^2=(420/841)^2
=>S AECF=S ABC*(1-(420/841)^2)
=>\(S_{AECF}=\dfrac{1}{2}\cdot40\cdot42\cdot\left[1-\left(\dfrac{420}{841}\right)^2\right]\simeq630,5\left(cm^2\right)\)
A B C M I N P
a) Ta có: \(BC=\sqrt{AB^2+AC^2}=10\)
\(\frac{PA}{PC}=\frac{BA}{BC}\Rightarrow\frac{PA}{CA}=\frac{BA}{BA+BC}\Rightarrow PA=\frac{BA.CA}{BA+BC}=\frac{6.8}{6+10}=3\)
\(BP=\sqrt{AB^2+AP^2}=3\sqrt{5}\)
\(\frac{BI}{PI}=\frac{AB}{AP}\Rightarrow\frac{BI}{BP}=\frac{AB}{AB+AP}\Rightarrow BI=\frac{AB.BP}{AB+AP}=\frac{6.3\sqrt{5}}{6+3}=2\sqrt{5}\)
Ta thấy: \(\frac{BI}{BM}=\frac{2\sqrt{5}}{5}=\frac{6}{3\sqrt{5}}=\frac{BA}{BP}\), suy ra \(\Delta BAP~\Delta BIM\)(c.g.c)
Vậy \(\widehat{BIM}=\widehat{BAP}=90^0.\)
b) Vẽ đường tròn tâm M đường kính BC, BI cắt lại (M) tại N.
Ta thấy \(\widehat{BIM}=\widehat{BNC}=90^0\), suy ra MI || CN, vì M là trung điểm BC nên I là trung điểm BN (1)
Dễ thấy \(\widehat{NIC}=\frac{1}{2}\widehat{ABC}+\frac{1}{2}\widehat{ACB}=\widehat{NCI}\), suy ra NI = NC (2)
Từ (1),(2) suy ra \(\tan\frac{\widehat{ABC}}{2}=\tan\widehat{NBC}=\frac{NC}{NB}=\frac{NI}{NB}=\frac{1}{2}\)
Suy ra \(\tan\widehat{ABC}=\frac{2\tan\frac{\widehat{ABC}}{2}}{1-\tan^2\frac{\widehat{ABC}}{2}}=\frac{4}{3}=\frac{AC}{AB}\)
\(\Rightarrow\frac{AC^2}{AB^2+AC^2}=\frac{16}{9+16}=\frac{16}{25}\Rightarrow\frac{AC}{BC}=\frac{4}{5}\)
Vậy \(AB:AC:BC=3:4:5\)
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot10=6^2=36\)
=>BH=36/10=3,6(cm)
XétΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
b: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(HE^2+HF^2=AH^2\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(AE\cdot BE=HE^2\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot FC=HF^2\)
\(AE\cdot BE+AF\cdot FC\)
\(=HE^2+HF^2\)
\(=AH^2\)
c: ΔABC vuông tại A
mà AI là đường trung tuyến
nên AI=BI=CI
IA=IC
=>ΔIAC cân tại I
=>\(\widehat{IAC}=\widehat{ICA}\)
=>\(\widehat{OAF}=\widehat{ACB}\)
AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABH}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABH}\)
=>\(\widehat{AFO}=\widehat{ABC}\)
\(\widehat{AFO}+\widehat{FAO}=\widehat{ABC}+\widehat{ACB}=90^0\)
=>AO\(\perp\)OF tại O
=>AI\(\perp\)FE tại O
Xét ΔAEF vuông tại A có AO là đường cao
nên \(\dfrac{1}{AO^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
a: Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
=>\(AC^2+48^2=65^2\)
=>\(AC^2=65^2-48^2=1921\)
=>\(AC=\sqrt{1921}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{48}{65}\)
=>\(\widehat{C}\simeq47^036'\)
=>\(\widehat{B}\simeq42^024'\)
b: Xét ΔABC vuông tại A có AK là đường cao
nên \(AK\cdot BC=AB\cdot AC\)
=>\(AK\cdot65=48\cdot\sqrt{1921}\)
=>\(AK=\dfrac{48}{65}\cdot\sqrt{1921}\simeq32,37\left(cm\right)\)
ΔABC vuông tại A có AM là trung tuyến
nên AM=BC/2=32,5(cm)
ΔAKM vuông tại K
=>\(KA^2+KM^2=AM^2\)
=>\(KM=\sqrt{32.5^2-32.37^2}\simeq2,9\left(cm\right)\)
Xét ΔAKM vuông tại K có
\(sinMAK=\dfrac{MK}{AM}=\dfrac{2.9}{32.5}=\dfrac{29}{325}\)
\(cosMAK=\dfrac{AK}{AM}\simeq\dfrac{249}{250}\)
\(tanMAK=\dfrac{29}{325}:\dfrac{249}{250}=\dfrac{290}{3237}\)
\(cotMAK=1:\dfrac{290}{3237}=\dfrac{3237}{290}\)