Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHCA vuông tại H và ΔACB vuông tại A có
\(\widehat{C}\) chung
Do đó: ΔHCA đồng dạng với ΔACB
b: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=10cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
=>\(BD=\dfrac{30}{7}\left(cm\right);CD=\dfrac{40}{7}\left(cm\right)\)
a) Xét ΔHCA vuông tại H và ΔACB vuông tại A có
\(\widehat{HCA}\) chung
Do đó: ΔHCA\(\sim\)ΔACB(g-g)
a) Ta có: AB^2 + AC^2 = 21^2 + 28^2 = 35^2 = BC^2
Vậy Tam giác ABC vuông tại A (đl Pytago đảo)
b) Ta có: Góc B + góc C = 90 độ (cmt câu a)
Góc HAC + góc C = 90 độ (Tam giác HAC vuông tại H)
=> Góc B = góc HAC
Mà Góc AHB= Góc AHC = 90 độ (Đường cao AH)
Vậy Tam giác HBA ~ tam giác HAC (góc - góc)
c)
Theo tính chất đường phân giác trong tam giác:
MB/ AB = MC / AC
<=> MB. AC = MC . AB
<=> MB . AC = (35- MB) . AB
<=> 35AB= MB.(AB+AC)
<=> MB = 35AB/(AB+AC) = 35.21/(21+28) = 15 cm
=> MC= 35 - 15 = 20 cm
Vậy MB = 15 cm, MC 20 cm
(Bạn tự vẽ hình và ghi giả thuyết kết luận nhé!)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>AB/HB=AC/HA
=>AB*HA=HB*AC
b: BC=căn 9^2+12^2=15cm
BI là phân giác
=>AI/AB=CI/BC
=>AI/3=CI/5=12/8=1,5
=>AI=4,5cm
c: S HAB/S HCA=(AB/CA)^2
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔHBA\(\sim\)ΔHAC(g-g)
Suy ra: \(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)(đpcm)
mong mọi người giải nhanh
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA∼ΔABC
b: Xét ΔHCA vuôg tại H và ΔACB vuông tại A có
góc C chung
Do đó: ΔHCA∼ΔACB