K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

a) Ta có: \(BC=BH+CH=2+4=6\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC=4.6=24\Rightarrow AB=2\sqrt{6}\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC=2.6=12\Rightarrow AC=2\sqrt{3}\left(cm\right)\)

b) Ta có: \(BC.cos^3B=BC.\dfrac{AB^3}{BC^3}=\dfrac{AB^3}{BC^2}\)

Ta có: \(AB^4=\left(AB^2\right)^2=\left(BH.BC\right)^2=BH^2.BC^2=BD.BA.BC^2\)

\(\Rightarrow AB^3=BD.BC^2\Rightarrow BD=\dfrac{AB^3}{BC^2}=BC.cos^3B\)

Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật

\(\Rightarrow DE=AH\)

Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)

\(=BD.BA.CE.CA=BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\)

\(\Rightarrow AH^3=BD.CE.BC\Rightarrow DE^3=BD.CE.BC\)

 

15 tháng 7 2021

ta có BH+CH=BC⇒BC=6BH+CH=BC⇒BC=6

lại có  AH2=BH⋅CH⇒AH=√8AH2=BH⋅CH⇒AH=8

mặt khác  AH⋅BC=AB⋅AC⇒AB⋅AC=6√8AH⋅BC=AB⋅AC⇒AB⋅AC=68

b,phan1 cos^3 BH la j 

AH2=BH⋅CH⇒AH4=BH2⋅CH2AH2=BH⋅CH⇒AH4=BH2⋅CH2

 ma BH2=BD⋅AB,HC2=EC⋅ACBH2=BD⋅AB,HC2=EC⋅AC

⇒AH4=BD⋅AB⋅EC⋅AC⇒AH4=BD⋅AB⋅EC⋅AC

nhungAH⋅BC=AB⋅ACAH⋅BC=AB⋅AC nên ta có AH4=BD⋅EC⋅AH⋅BC⇒AH3=DB⋅EC⋅BC

15 tháng 7 2017

tu ve hinh nha 

\(BD=BH\cdot COSB\Rightarrow BD^3=COSB^3\cdot BH^3\)

\(BD^3=COSB^3\cdot BH\cdot BD\cdot AB\)(doBH^2=BD*AB)

\(BD^2=COSB^3\cdot BH\cdot AB\Rightarrow BD=COSB^3\cdot\frac{BH}{BD}\cdot AB\)=\(COSB^3\cdot\frac{BC}{AB}\cdot AB=BC\cdot COSB^3\)

mk đang vội nên làm hơi tất thông cảm nha

15 tháng 7 2017

bạn áp dụng hệ thức lượng và tỉ số lượng giác là ra thôi

16 tháng 6 2019

a/ Ta có \(BH=\frac{AB^2}{BC}\)

\(CH=\frac{AC^2}{BC}\)

\(\Rightarrow\frac{BH}{CH}=\frac{\frac{AB^2}{BC}}{\frac{AC^2}{BC}}=\frac{AB^2}{AC^2}\)

Sau đó bình phương 2 vế lên là sẽ ra cái thứ 2

b/ Xét \(\Delta BDH\sim\Delta BAC\left(gg\right)\)

\(\Rightarrow\frac{BD}{BA}=\frac{BH}{BC}\) (1)

Xét \(\Delta CEH\sim\Delta CAB\left(gg\right)\)

\(\Rightarrow\frac{CE}{CA}=\frac{CH}{CB}\) (2)

chia (1) cho (2):

\(\frac{BD}{CE}.\frac{CA}{AB}=\frac{HB}{HC}\Leftrightarrow\frac{BD}{CE}=\frac{HB}{HC}.\frac{AB}{AC}\)

Từ câu a có: \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\Rightarrow\frac{BD}{CE}=\frac{AB^2}{AC^2}.\frac{AB}{AC}=\frac{AB^3}{AC^3}\)

15 tháng 10 2018

a,Áp dụng htl trong ΔABC có:

AB2=BH x BC⇒tính đc BH

BC=BH+HC⇒tính đc HC

htl có AH2=BH x CH⇒tính đc AH

b,Áp dụng htl trong ΔBHA có:

AH2=AD x AB

BH2=BD x AB

chia hai vế⇒đccm

c,Áp dụng htl trong ΔABC có:

AH x BC=AB x AC,AH2=BH x BC⇒AH4=BH2 x CH2(1)

htl trong ΔBHA có:

BH2=BD xAB(2)

htl trong ΔAHC có:

HC2=CE x AC(3)

nhân 2 vế (2) và (3) ta đc:

BH2 x HC2=BD x CE x AB x AC

từ (1)⇒AH4=BD x CE x BC x AH

⇒BD x CE x BC=AH4/AH=AH3

6 tháng 7 2021

A B D E C H

a) Áp dụng định lý Pytago vào \(\Delta vuôngABC\), ta có:

\(AB^2+AC^2=BC^2\)\(\Rightarrow AC^2=BC^2-AB^2\)\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)

Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta vuôngABC\), ta có:

\(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4\left(cm\right)\)

Áp dụng hệ thức giữa cạnh học vuông và hình chiếu vào \(\Delta vuôngABC\), ta có:

\(AB^2=BC.HB\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{8^2}{10}=6,4\left(cm\right)\)

Xét \(\Delta vuôngABC\), ta có:

 \(HB+HC=BC\Rightarrow HC=BC-HB=10-6,4=3,6\left(cm\right)\)

b) Ta có \(\left\{{}\begin{matrix}AH^2=AB.AD\\BH^2=AB.BD\end{matrix}\right.\) (Áp dụng hệ thức giữa cạnh góc \(\perp\) và hình chiếu)

\(\Rightarrow\dfrac{AH^2}{BH^2}=\dfrac{AB.AD}{AB.BD}\)\(=\dfrac{AD}{BD}\)\(\left(đpcm\right)\)

c) Xét \(\Delta vuôngBHA\), ta có:

\(BH^2=DB.AB\) (Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu)

Xét \(\Delta vuôngAHC\), ta có:

\(CH^2=EC.AC\) (Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu)

Áp dụng hệ thức liên quan tới đường cao vào \(\Delta vuôngABC\), ta có:

\(AH^2=BH.CH\Rightarrow AH^4=BH^2.CH^2=DB.AB.EC.AC\)

Mặt khác \(AB.AC=AH.BC\)

\(\Rightarrow AH^4=BC.AH.DB.EC\Rightarrow AH^3=BC.DB.EC\left(đpcm\right)\)

 

 

15 tháng 7 2017

A B C H D E

ta co \(BH+CH=BC\Rightarrow BC=6\)

lai co \(AH^2=BH\cdot CH\Rightarrow AH=\sqrt{8}\)

mat khac \(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=6\sqrt{8}\)

b,phan1 cos^3 BH la j 

\(AH^2=BH\cdot CH\Rightarrow AH^4=BH^2\cdot CH^2\)

 ma \(BH^2=BD\cdot AB,HC^2=EC\cdot AC\)

\(\Rightarrow AH^4=BD\cdot AB\cdot EC\cdot AC\)

nhung\(AH\cdot BC=AB\cdot AC\) nên ta có \(AH^4=BD\cdot EC\cdot AH\cdot BC\Rightarrow AH^3=DB\cdot EC\cdot BC\)

a: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đườg cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=AH^2\left(3\right)\)

Từ (1), (2) và (3) suy ra \(AD\cdot AB=AE\cdot AC=HB\cdot HC\)

b: \(DA\cdot DB+EA\cdot EC\)

\(=HD^2+HE^2\)

\(=DE^2=AH^2\)

c: \(AE\cdot AB+AD\cdot AC\)

\(=\dfrac{AH^2}{AC}\cdot AB+\dfrac{AH^2}{AB}\cdot AC\)

\(=AH^2\left(\dfrac{AB}{AC}+\dfrac{AC}{AB}\right)=AH^2\cdot\dfrac{AB^2+AC^2}{AB\cdot AC}\)

\(=\dfrac{AH^2\cdot BC^2}{AH\cdot BC}=AH\cdot BC\)

\(=AB\cdot AC\)

bài 1 : Cho tam giác ABC vuông tại A , đường cao AH . kẻ HD vuông góc AB ( B thuộc AB) HE vuông góc AC ( E thuộc AC ) a , chứng minh AH^2 trên AC^2 = HB trên HC b, AH^3= BD.CE.BC Bài 2 . cho hình vuông ABCD cạnh a . gọi M là điểm nằm giữa A và B , Tia DM và CB cắt nhau tại K . Qua D kẻ đường thằng vuông góc với DM và cắt BC tại N a, CM : tam giác DMN cân b, CM : \(1/ DM^2 + 1/ DK^2\) không phụ thuộc vào vị trí điểm...
Đọc tiếp

bài 1 : Cho tam giác ABC vuông tại A , đường cao AH . kẻ HD vuông góc AB ( B thuộc AB) HE vuông góc AC ( E thuộc AC )
a , chứng minh AH^2 trên AC^2 = HB trên HC

b, AH^3= BD.CE.BC

Bài 2 . cho hình vuông ABCD cạnh a . gọi M là điểm nằm giữa A và B , Tia DM và CB cắt nhau tại K . Qua D kẻ đường thằng vuông góc với DM và cắt BC tại N

a, CM : tam giác DMN cân

b, CM : \(1/ DM^2 + 1/ DK^2\) không phụ thuộc vào vị trí điểm M trên AB

Bài 3 ; cho tam giác ABC vuông tại A , đường cao AH. từ B kẻ đường thẳng vuông góc với AB và cắt tia AH tại D

a, CM ; \(AB^2 / AD^2= HC /BC\)

b, CM ;\(1/ AB^2 + 1/ BD^2 = 1/ HD. HA\)

c, cho AB = 30cm , AH= 24cm. tính BH, BC ,BD

Bài 4 HÌnh vuông ABCD , điểm M bất kì trên cạnh BC, AM cắt đường thẳng CD tại E . Trên tia đối của tia DC lấy điểm N sao cho DN= BM

a, CM; AM vuông góc AN

b, CM; \( 1/ Am^2+1/AE^2=1/BC^2\)

1

Câu 1: 

a: \(\dfrac{AB^2}{AC^2}=\dfrac{BH\cdot CB}{CH\cdot CB}=\dfrac{BH}{CH}\)

b: \(BD\cdot CE\cdot BC\)

\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)

\(=AH^4\cdot\dfrac{BC}{AB\cdot AC}=\dfrac{AH^4}{AH}=AH^3\)