K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (A;AH) có

AH là bán kính

BC\(\perp\)AH tại H

Do đó: BC là tiếp tuyến của (A;AH)

b: ΔAHI cân tại A

mà AB là đường cao

nên AB là phân giác của góc HAI

Xét ΔAHB và ΔAIB có

AH=AI

\(\widehat{HAB}=\widehat{IAB}\)

AB chung

Do đó: ΔAHB=ΔAIB

=>\(\widehat{AHB}=\widehat{AIB}=90^0\)

=>BI là tiếp tuyến của (A;AH)

c: 

\(\widehat{HAB}+\widehat{HAC}=\widehat{BAC}=90^0\)

=>\(\widehat{HAC}=90^0-\widehat{HAB}\)

\(\widehat{KAH}+\widehat{HAI}=180^0\)(hai góc kề bù)

=>\(\widehat{KAH}+2\cdot\widehat{BAH}=180^0\)

=>\(\widehat{KAH}=180^0-2\cdot\widehat{BAH}=2\left(90^0-\widehat{BAH}\right)=2\cdot\widehat{CAH}\)

=>AC là phân giác của góc KAH

Xét ΔAHC và ΔAKC có

AH=AK

\(\widehat{HAC}=\widehat{KAC}\)

AC chung

Do đó: ΔAHC=ΔAKC

=>CH=CK

CH+HB=CB

mà CH=CK và BH=BI

nên CK+BI=BC

a: Xet (O) có

ΔAHB nội tiếp

AB là đường kính

Do đo: ΔAHB vuông tại H

=>AH vuông góc với BC

AB^2=BC*BH

b: ΔOAD cân tại O

mà OC là đường cao

nên OC là phân giác của góc AOD

Xét ΔOAC và ΔODC có

OA=OD

góc AOC=góc DOC

OC chung

Do đó: ΔOAC=ΔODC

=>góc ODC=90 độ

=>CD là tiếp tuyến của (O)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{3^2}+\dfrac{1}{4^2}=\dfrac{1}{9}+\dfrac{1}{16}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{16}{144}+\dfrac{9}{144}=\dfrac{25}{144}\)

\(\Leftrightarrow AH^2=\dfrac{144}{25}\)

hay \(AH=\dfrac{12}{5}=2.4\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=3^2-2.4^2=3.24\)

hay BH=1,8

Vậy: AH=2,4; BH=1,8

b) Xét (A;AH) có 

AH là bán kính

CH⊥AH tại H(gt)

Do đó: CH là tiếp tuyến của (A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

hay CB là tiếp tuyến của (A;AH)(đpcm)

c) 

1) Xét (A) có 

CH là tiếp tuyến có H là tiếp điểm(cmt)

CK là tiếp tuyến có K là tiếp điểm(gt)

Do đó: CH=CK(Tính chất hai tiếp tuyến cắt nhau)

Xét (A) có 

AH là bán kính

BH⊥AH tại H(gt)

Do đó: BH là tiếp tuyến của (O)(Dấu hiệu nhận biết tiếp tuyến đường tròn)

Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(cmt)

BI là tiếp tuyến có I là tiếp điểm(gt)

Do đó: BH=BI(Tính chất hai tiếp tuyến cắt nhau)

Ta có: BH+CH=BC(H nằm giữa B và C)

mà BH=BI(cmt)

và CH=CK(cmt)

nên BC=BI+CK(đpcm)

2) Xét (A) có 

BH là tiếp tuyến có H là tiếp điểm(cmt)

BI là tiếp tuyến có I là tiếp điểm(gt)

Do đó: AB là tia phân giác của \(\widehat{HAI}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{HAI}=2\cdot\widehat{HAB}\)

Xét (A) có 

CK là tiếp tuyến có K là tiếp điểm(gt)

CH là tiếp tuyến có H là tiếp điểm(cmt)

Do đó: AC là tia phân giác của \(\widehat{HAK}\)(Tính chất hai tiếp tuyến cắt nhau)

\(\widehat{HAK}=2\cdot\widehat{CAH}\)

Ta có: \(\widehat{KAI}=\widehat{KAH}+\widehat{IAH}\)(tia AH nằm giữa hai tia AK,AI)

mà \(\widehat{HAI}=2\cdot\widehat{HAB}\)(cmt)

và \(\widehat{HAK}=2\cdot\widehat{CAH}\)(cmt)

nên \(\widehat{KAI}=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)

\(\Leftrightarrow\widehat{KAI}=2\cdot\left(\widehat{HAB}+\widehat{HAC}\right)\)

\(\Leftrightarrow\widehat{KAI}=2\cdot90^0=180^0\)

hay K,A,I thẳng hàng(đpcm)

30 tháng 12 2018

A H B C M I D K F P Q G Note:Hình hơi lệch xíu ^^

a, Vì CM là tiếp tuyến của (A)

=> \(CM\perp AM\)

=> ^CMA = 90o

=> M thuộc đường tròn đường kính AC

Vì ^CHA = 90o

=> H  thuộc đường tròn đường kính AC

Do đó : M và H cùng  thuộc đường tròn đường kính AC

hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC

b, Vì AM = AH ( Bán kính)

       CM = CH (tiếp tuyến)

=> AC là trung trực MH

=> \(AC\perp MH\)tại I

Xét \(\Delta\)AMC vuông tại M có MI là đường cao 

\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)

c, Vì CM , CH là tiếp tuyến của (A)

=> AC là phân giác ^HAM

=> ^HAC = ^MAC 

Mà ^HAC + ^HAB  = 90o

=> ^MAC + ^HAB = 90o

Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)

=> ^BAD  + 90o + ^CAM = 180o

=> ^BAD + ^CAM = 90o

Do đó ^BAD = ^BAH (Cùng phụ ^CAM)

Xét \(\Delta\)BAD và \(\Delta\)BAH có:

AB chung

^BAD = ^BAH (cmt)

AD = AH (Bán kính (A) )

=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)

=> ^ADB = ^AHB = 90o

\(\Rightarrow BD\perp AD\)

=> BD là tiếp tuyến của (A)

Làm đc đến đây thôi :(

21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???