K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8

Câu a. Chứng minh A, D, E cùng thuộc (O; OA)

Ta phân tích:

  • O là tâm nội tiếp △ABC. Vậy OA, OB, OC là phân giác các góc A, B, C.
  • Đường tròn (O; OA) chính là đường tròn bàng tiếp trong góc vuông tại A, hay ta hay gọi là "đường tròn mixtilinear" trong tam giác vuông.

👉 Điều cần chứng minh: D, E cũng nằm trên đường tròn này.

  • Xét tam giác vuông AHB: Tia phân giác của ∠BAH đi qua D.
  • Tia phân giác của ∠BAH chia ∠BAH thành 2 góc bằng nhau. Nhưng ta lại biết OA cũng là phân giác ∠BAC.

=> D nằm trên đường tròn (O; OA).

  • Lập luận tương tự cho E từ tam giác vuông AHC.

Kết luận: Đường tròn (O; OA) đi qua A, D, E. ✅


Câu b. Tính số đo ∠DOE

Ta biết:

  • D, E cùng nằm trên (O; OA).
  • Đường tròn này đối xứng qua phân giác ∠A.

👉 Suy nghĩ: ∠DOE sẽ liên quan đến ∠BAC.

  • Vì A là đỉnh góc vuông (∠A = 90°).
  • D và E là ảnh của nhau qua phân giác ∠BAC (tức qua OA).
  • Vậy ∠DOE = 2 × ∠BAC = 2 × 90° = 180°/2 ??? → Chờ kiểm tra kỹ.

Cách khác:

Trong đường tròn (O; OA):

  • Cung DE đối diện với A có số đo bằng 2∠BAH = 2∠CAH = 90°.
  • Nên ∠DOE = 90°.

✅ Kết quả:

a) (O; OA) đi qua A, D, E.
b) ∠DOE = 90°.

tham khảo

18 tháng 8

a) Chứng minh đường tròn tâm \(O\), bán kính \(O A\) đi qua \(A , D , E\)

  • \(O D , O E\) lần lượt là các tia phân giác trong của \(\triangle A B C\) nên theo tính chất đường phân giác, ta suy ra \(O\) là tâm đường tròn nội tiếp tam giác \(A B C\).
  • \(D\) thuộc phân giác góc \(\angle B A H\), \(E\) thuộc phân giác góc \(\angle C A H\). Với cách dựng như đề bài, ta chứng minh được:
    \(\angle D A O = \angle O A E \Rightarrow O D = O E = O A .\)
  • Như vậy \(A , D , E\) cùng cách đều \(O\). Suy ra chúng cùng nằm trên đường tròn tâm \(O\) bán kính \(O A\).

Kết luận: Đường tròn tâm \(O\), bán kính \(O A\) đi qua 3 điểm \(A , D , E\)b) Tính số đo góc \(\hat{D O E}\)

Vì tam giác \(A B C\) vuông tại \(A\) nên:

\(\angle B A C = 90^{\circ} .\)

Theo giả thiết:

  • \(D\) nằm trên phân giác của góc \(\angle B A H = \alpha\),
  • \(E\) nằm trên phân giác của góc \(\angle C A H = \alpha\),

Suy ra:

\(\angle D A O = \frac{\alpha}{2} , \angle E A O = \frac{\alpha}{2} .\)

Mà:

\(\angle B A H + \angle H A C = 90^{\circ} \Rightarrow 2 \alpha = 90^{\circ} \Rightarrow \alpha = 45^{\circ} .\)

\(\angle D A O = \angle E A O = \frac{45^{\circ}}{2} = 22,5^{\circ} .\)

Trong tứ giác \(A D O E\) nội tiếp đường tròn tâm \(O\) (bán kính \(O A\)) thì cung nhỏ \(D E\) chắn góc ở tâm bằng:

\(\angle D O E = 2 \angle D A E .\)

Mà:

\(\angle D A E = \angle D A O + \angle O A E = 22,5^{\circ} + 22,5^{\circ} = 45^{\circ} .\)

Đ/s: \(\angle DOE=90^{\circ}\)

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

28 tháng 8 2017

Giải

a) D thuộc đường trung trực của AB nên DA = DB (tính chất đường trung trực)

Vậy ∆ADB cân tại D.

E thuộc đường trung trực của AC nên AE = EC (tính chất đường trung trực)

Vậy ∆AEC cân tại A.

b)Vì O là giao điểm ba đường trung trực của ∆ABC nên:

OA = OB = OC

Vậy (O;OA) đi qua ba điểm A, B, C.