Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ox là trung trực của ME
=>OM=OE
=>ΔOME cân tại O
=>Ox là phân giác của góc MOE(1)
Oy là trung trực của MF
=>OM=OF
=>ΔOMF cân tại O
=>Oy là phân giác của góc MOF(2)
OM=OF
OM=OE
=>OF=OE
b: Từ (1), (2) suy ra góc EOF=2*(góc xOM+góc yOM)
=2*góc xOy
=2a
c: Khi a=90 độ thì góc EOF=2*90=180 độ
=>E,O,F thẳng hàng
mà OE=OF
nên O là trung điểm của EF
Trong \(\Delta ABC\)cân tại A , ta có :
AH là đường p/g của góc A
\(\Rightarrow\)AH là đường trung trực của BC
OI là đường trung trực của AB
\(\Rightarrow\)O là giao điểm của 3 đường trung trực của \(\Delta ABC\)
=> OC=OA=OB
Xét \(\Delta AOC\)có:
OA=OC ( cmt )
\(\Rightarrow OAC=OCA\)
MÀ \(IAO=OAC\Rightarrow IAO=FCO\)
Xét \(\Delta OEA\)và \(\Delta OFC\)có :
AE= CF ( gt )
EAO=FOC ( cmt )
OA=OC ( cmt )
\(\Rightarrow\Delta OEA=\Delta OFFC\left(c-g-c\right)\)
\(\Rightarrow OE=OF\left(dpcm\right)\)
b, Vì OE=OF ( câu a )
\(\Rightarrow\)O thuộc đường trung trực của EF
a: Xét ΔEAB có
EM vừa là đường cao, vưa là trung tuyến
=>ΔEAB cân tại E
b: Xét ΔEBD và ΔEAF có
EB=EA
góc DBE=góc AFE
BD=AF
=>ΔEBD=ΔEAF
=>ED=EF
=>EF>DF/2
a: Xét ΔAEB có
EM là đường cao
EM là đường trung tuyến
Do đó: ΔAEB cân tại E