K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ox là trung trực của ME

=>OM=OE

=>ΔOME cân tại O

=>Ox là phân giác của góc MOE(1)

Oy là trung trực của MF

=>OM=OF
=>ΔOMF cân tại O

=>Oy là phân giác của góc MOF(2)

OM=OF

OM=OE

=>OF=OE

b: Từ (1), (2) suy ra góc EOF=2*(góc xOM+góc yOM)

=2*góc xOy

=2a

c: Khi a=90 độ thì góc EOF=2*90=180 độ

=>E,O,F thẳng hàng

mà OE=OF

nên O là trung điểm của EF

15 tháng 7 2018

Trong \(\Delta ABC\)cân tại A , ta có :

AH là đường p/g của góc A

\(\Rightarrow\)AH là đường trung trực của BC

OI là đường trung trực của AB

\(\Rightarrow\)O là giao điểm của 3 đường trung trực của \(\Delta ABC\)

=> OC=OA=OB

Xét \(\Delta AOC\)có:

OA=OC ( cmt )

\(\Rightarrow OAC=OCA\)

\(IAO=OAC\Rightarrow IAO=FCO\)

Xét \(\Delta OEA\)và \(\Delta OFC\)có :

AE= CF ( gt )

EAO=FOC ( cmt )

OA=OC ( cmt )

\(\Rightarrow\Delta OEA=\Delta OFFC\left(c-g-c\right)\)

\(\Rightarrow OE=OF\left(dpcm\right)\)

b, Vì OE=OF ( câu a )

\(\Rightarrow\)O thuộc đường trung trực của EF

a: Xét ΔEAB có

EM vừa là đường cao, vưa là trung tuyến

=>ΔEAB cân tại E

 b: Xét ΔEBD và ΔEAF có

EB=EA

góc DBE=góc AFE

BD=AF

=>ΔEBD=ΔEAF

=>ED=EF

=>EF>DF/2

a: Xét ΔAEB có 

EM là đường cao

EM là đường trung tuyến

Do đó: ΔAEB cân tại E