Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cm tamgiac ABC đồng dạng với tamgiac HBA(g.g)
=> AB/BC = BH/AB hay AB^2 = BH.HC
và cm tamgiac ABC đồng dạng với tamgiac HAC(g.g)
=> AC/BC = HC/AC hay AC^2 = CH.BH
a. Xét tg vuông ABC và tg vuông HBA có:
\(\widehat{ABH}\)chung
\(\Rightarrow\Delta ABC~\Delta HBA\)
\(\Rightarrow\frac{AB}{HB}=\frac{BC}{BA}\)
\(\Rightarrow AB^2=HB.BC\)
Cmtt:\(\Delta ABC~HAC\)
\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow AC^2=BC.HC\)
b. lát làm tiếp nhá
Theo Pytago tam giác ABC vuông tại A ta có
\(AC=\sqrt{BC^2-AB^2}=4cm\)
Ta có \(S_{ABC}=\dfrac{1}{2}.AH.BC;S_{ABC}=\dfrac{1}{2}.AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\)cm
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA
=>BA^2=BH*BC
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: Xét ΔCAM có
CK,AH là đường cao
CK cắt AH tại I
=>I là trực tâm
=>MI vuông góc AC
=>MI//AB
Xét ΔHAB có
M là trung điểm của HB
MI//AB
=>I là trung điểm của HA
Xét \(\Delta HBA\) vuông tại \(H,\Delta ABC\) vuông tại \(A:\)
\(\widehat{ABH}:Chung \)
\(\widehat{BAC}=\widehat{BHA}=90^o \)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g.g\right)\)
\(\Rightarrow\dfrac{AH}{HB}=\dfrac{HC}{HA}\)
\(\Rightarrow AH^2=HB.HC\)
Tam giác \(HBA\sim ABC\) thì \(\frac{HA}{HB}=\frac{AC}{AB}\) chứ không ra tỉ số như bạn viết được.
a: Xet ΔABC vuông tại A co AH là đường cao
nên AH^2=HB*HC
b: BC=3,6+6,4=10cm
\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)
\(AB=\sqrt{3.6\cdot10}=6\left(cm\right)\)
=>AC=8cm
Bạn tự vẽ hình nhé
a) Xét Tg ABC và Tg HBA có:
Góc BAC = Góc AHB(=90độ)
Góc B chung
=> Tg ABC ~ Tg HBA(g.g)
=> AB/HB=BC/BA
=> AB^2=HB. BC
=> Đpcm
b) BC= BH+ HC= 4+9=13cm
Có AB^2= HB.BC (câu a)
=> AB^2= 4.13= 52
=> AB= căn 52(cm)
Có Tg ABC vuông tại A
=> AC^2= BC^2-AB^2= 13^2- 52=117
=> AC= căn 117 (cm)
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot AH\cdot BC\)
=>AB*AC=AH*CB
b: Xét ΔABC vuông tại A có AH là đường cao
nên AC^2=HC*BC
c: Xét ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
a) Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔAHB\(\sim\)ΔCAB(g-g)
Suy ra: \(\dfrac{AB}{CB}=\dfrac{HB}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow AB^2=HB\cdot BC\)(đpcm)
b) Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow AH^2=HB\cdot HC\)(đpcm)