Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(BC=BH+CH=2+4=6\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC=4.6=24\Rightarrow AB=2\sqrt{6}\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC=2.6=12\Rightarrow AC=2\sqrt{3}\left(cm\right)\)
b) Ta có: \(BC.cos^3B=BC.\dfrac{AB^3}{BC^3}=\dfrac{AB^3}{BC^2}\)
Ta có: \(AB^4=\left(AB^2\right)^2=\left(BH.BC\right)^2=BH^2.BC^2=BD.BA.BC^2\)
\(\Rightarrow AB^3=BD.BC^2\Rightarrow BD=\dfrac{AB^3}{BC^2}=BC.cos^3B\)
Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật
\(\Rightarrow DE=AH\)
Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BD.BA.CE.CA=BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\)
\(\Rightarrow AH^3=BD.CE.BC\Rightarrow DE^3=BD.CE.BC\)
ta có BH+CH=BC⇒BC=6BH+CH=BC⇒BC=6
lại có AH2=BH⋅CH⇒AH=√8AH2=BH⋅CH⇒AH=8
mặt khác AH⋅BC=AB⋅AC⇒AB⋅AC=6√8AH⋅BC=AB⋅AC⇒AB⋅AC=68
b,phan1 cos^3 BH la j
2 AH2=BH⋅CH⇒AH4=BH2⋅CH2AH2=BH⋅CH⇒AH4=BH2⋅CH2
ma BH2=BD⋅AB,HC2=EC⋅ACBH2=BD⋅AB,HC2=EC⋅AC
⇒AH4=BD⋅AB⋅EC⋅AC⇒AH4=BD⋅AB⋅EC⋅AC
nhungAH⋅BC=AB⋅ACAH⋅BC=AB⋅AC nên ta có AH4=BD⋅EC⋅AH⋅BC⇒AH3=DB⋅EC⋅BC
tu ve hinh nha
\(BD=BH\cdot COSB\Rightarrow BD^3=COSB^3\cdot BH^3\)
\(BD^3=COSB^3\cdot BH\cdot BD\cdot AB\)(doBH^2=BD*AB)
\(BD^2=COSB^3\cdot BH\cdot AB\Rightarrow BD=COSB^3\cdot\frac{BH}{BD}\cdot AB\)=\(COSB^3\cdot\frac{BC}{AB}\cdot AB=BC\cdot COSB^3\)
mk đang vội nên làm hơi tất thông cảm nha
Quéo quèo queo, sai đề rồi bạn ơi, bị lỗi kĩ thuật luôn: ((
a: \(BC\cdot CH=CA^2\)
\(AD\cdot AH=AC^2\)(ΔACD vuông tại C có CH là đường cao)
Do đó: \(BC\cdot CH=AD\cdot AH\)
Xét ΔBCA vuông tại A và ΔADC vuông tại C có
góc BCA=góc ADC
Do đó: ΔBCA đồng dạng với ΔADC
Suy ra: AB/AC=AC/DC
hay \(AC^2=AB\cdot DC=BC\cdot CH=AD\cdot AH\)
c: \(\dfrac{BE}{BC}=\dfrac{BH^2}{AB}:BC=\dfrac{BH^2}{AB\cdot BC}=\left(\dfrac{AB^2}{BC}\right)^2\cdot\dfrac{1}{AB\cdot BC}\)
\(=\dfrac{AB^3}{BC^3}=\left(\dfrac{AB}{BC}\right)^3=cos^3B\)
hay \(BE=cos^3B\cdot BC\)
a,Áp dụng htl trong ΔABC có:
AB2=BH x BC⇒tính đc BH
BC=BH+HC⇒tính đc HC
htl có AH2=BH x CH⇒tính đc AH
b,Áp dụng htl trong ΔBHA có:
AH2=AD x AB
BH2=BD x AB
chia hai vế⇒đccm
c,Áp dụng htl trong ΔABC có:
AH x BC=AB x AC,AH2=BH x BC⇒AH4=BH2 x CH2(1)
htl trong ΔBHA có:
BH2=BD xAB(2)
htl trong ΔAHC có:
HC2=CE x AC(3)
nhân 2 vế (2) và (3) ta đc:
BH2 x HC2=BD x CE x AB x AC
từ (1)⇒AH4=BD x CE x BC x AH
⇒BD x CE x BC=AH4/AH=AH3
A B D E C H
a) Áp dụng định lý Pytago vào \(\Delta vuôngABC\), ta có:
\(AB^2+AC^2=BC^2\)\(\Rightarrow AC^2=BC^2-AB^2\)\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-8^2}=6\left(cm\right)\)
Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta vuôngABC\), ta có:
\(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{6.8}{10}=4\left(cm\right)\)
Áp dụng hệ thức giữa cạnh học vuông và hình chiếu vào \(\Delta vuôngABC\), ta có:
\(AB^2=BC.HB\Rightarrow HB=\dfrac{AB^2}{BC}=\dfrac{8^2}{10}=6,4\left(cm\right)\)
Xét \(\Delta vuôngABC\), ta có:
\(HB+HC=BC\Rightarrow HC=BC-HB=10-6,4=3,6\left(cm\right)\)
b) Ta có \(\left\{{}\begin{matrix}AH^2=AB.AD\\BH^2=AB.BD\end{matrix}\right.\) (Áp dụng hệ thức giữa cạnh góc \(\perp\) và hình chiếu)
\(\Rightarrow\dfrac{AH^2}{BH^2}=\dfrac{AB.AD}{AB.BD}\)\(=\dfrac{AD}{BD}\)\(\left(đpcm\right)\)
c) Xét \(\Delta vuôngBHA\), ta có:
\(BH^2=DB.AB\) (Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu)
Xét \(\Delta vuôngAHC\), ta có:
\(CH^2=EC.AC\) (Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu)
Áp dụng hệ thức liên quan tới đường cao vào \(\Delta vuôngABC\), ta có:
\(AH^2=BH.CH\Rightarrow AH^4=BH^2.CH^2=DB.AB.EC.AC\)
Mặt khác \(AB.AC=AH.BC\)
\(\Rightarrow AH^4=BC.AH.DB.EC\Rightarrow AH^3=BC.DB.EC\left(đpcm\right)\)
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)