K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

a, Vì BA= BD => tam giác BAD cân tại B => góc DBA = góc DAB

b, Trong tam giác vuông ADH có: góc BDA + góc DAH = 90 độ

Mà góc CAB + góc DAH = góc CAB = 90 độ

=> góc BDA + góc DAH = góc CAB + góc DAB

Mà góc DBA = góc DAB ( cmt)

=> góc DAH = góc CAD => AD là tia phân giác của góc HAC

c, Xét tam giác AKD và tam giác AHD, có:

AD chung ; góc DAH = góc DAK ( AD là tia phân giác của góc HAC)

góc AHD = góc AKD ( AH là đường cao ; DK vuông góc AC)

=> tam giác AKD = tam giác AHD ( cạnh huyền - góc nhọn )

=> AH = AK ( 2 cạnh tương ứng)

d, Ta có : BC + AH = BD + BC + AH = AB + AK ( vì BD = AB ; AH = AK) (1)

Xét tam giác DC vuông tại K có:

KC là cạnh góc vuông

DC là cạnh huyền

=> KC <DC ( quan hệ giữa đường vuông góc và đường xiên) (2)

Từ (1) và (2) => BC + AH > AB+ KC + AC

=> BC + AH > AB+ AC ( Vì AC = KC + AK)

Đánh giá cho mình nhá ! =))

 

18 tháng 4 2021

A B C K H D

2 tháng 2 2018

Câu 1: Em tham khảo tại đây nhé.

Câu hỏi của trần thị minh hải - Toán lớp 7 - Học toán với OnlineMath

3 tháng 4 2019

A B C H D K 1 2

                     

3 tháng 4 2019

a) Vì BA=BA ( GT )

\(\Rightarrow\Delta BAD\) cân tại B ( đn)

\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)( tính chất )      (4)

b) Vì tam giác HAD vuông tại H \(\Rightarrow\widehat{HAD}+\widehat{D1}=90^0\)( phụ nhau )    (1)

Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^0\)( h.vẽ)      (2)

 Từ (1) và (2) \(\Rightarrow\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)( 3)

Từ (3) và (4) \(\Rightarrow\widehat{HAD}=\widehat{CAD}\)mà AD nằm giữa 2 tia AH và AC ( c.ve)

\(\Rightarrow AD\)là phân giác của góc HAC.

c)  Xét \(\Delta HAD\)và \(\Delta CAD\)có:

           \(\hept{\begin{cases}\widehat{AHD}=\widehat{ACD}=90^0\\ADchung\\\widehat{HAD}=\widehat{CAD}\left(cmt\right)\end{cases}\Rightarrow\Delta HAD=\Delta CAD\left(ch-gn\right)}\)

\(\Rightarrow\hept{\begin{cases}HD=CD\left(2canhtuongung\right)\\AH=AK\left(2canhtuongung\right)\end{cases}}\)

Xét tam giác DHC có HD=CD ( cmt)

\(\Rightarrow\Delta DHC\)cân tại D

\(\Rightarrow\widehat{DHC}=\widehat{DCH}\left(tc\right)\) (5)

Ta có:  \(\widehat{H1}+\widehat{DHC}=\widehat{AHD}=90^0\) (6)

            \(\widehat{K1}+\widehat{DCH}=\widehat{AKD}=90^0\)(7)

Từ (5) , (6) và (7) \(\Rightarrow\widehat{H1}=\widehat{K1}\)

\(\Rightarrow\Delta AHK\)cân tại A.

d) Xét tam giác DKC vuông tại K nên \(DC>KC\)( tính chất )

                                                    \(\Rightarrow DC+AK>KC+AK\)

                                            mà AH=AK ( cmt)

                                                     \(\Rightarrow DC+AH>KC+AK\)

                                                      \(\Rightarrow DC+AH+BD>KC+AK+BD\)

                                                        mà AB=BD ( cmt)

                                                      \(\Rightarrow AK+KC+AB< DC+BD+AH\)

                                                       \(\Rightarrow AB+AC< BC+AH\left(đpcm\right)\)

                                           

( p/s: Đánh giấu cho tôi kí hiệu góc H1 và K1 nhé chắc bạn biết mà )

4 tháng 4 2018

trả lời nhanh nha

6 tháng 5 2017

a) vì bd =ab nên=>tam giác bad cân tại b 

=>góc bad = góc bda

cho mk đi mk giải tiếp cho ^^^

31 tháng 1 2016

a) BD=BA => tam giác BAD cân tại B =>góc BAD= góc BDA 
có BDA + HAD =90 (tam giác AHD vuông) 
BAD + DAC = 90 ( cùng bằng góc BAC=90) 
suy ra HAD= DAC 
=> tia AD là tia phân giác của góc HAC 
b) tam giác vuông ADH và ADK có 
AD chung 
HAD=KAD 
=> tam giác vuông ADH = tam giác vuông ADK 
=> AK=AH 
c) Có DC > KC (tam giác KDC vuông, DC là cạnh huyền) 
=> DC + BD+ AK > KC + BD + AK 
=> BC +AK > AC + BD 
=> AB + AC < BC + AH (vì AK=AH, AB = AD)