K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABC có 

E là trung điểm của AB(gt)

F là trung điểm của AC(gt)

Do đó: EF là đường trung bình của ΔABC(ĐỊnh nghĩa đường trung bình của tam giác)

Suy ra: EF//BC

hay BEFC là hình thang có hai đáy là EF và BC và FE\(\perp\)AH(đpcm)

16 tháng 7 2023

Bạn xem lại đề

16 tháng 7 2023

? tam giác ABCD

a: Xét ΔFCD vuông tại C có CE là đường cao

nên \(FE\cdot FD=FC^2\left(1\right)\)

Xét ΔFCB vuông tại C có CH là đường cao

nên \(FH\cdot FB=FC^2\left(2\right)\)

Từ (1) và (2) suy ra \(FE\cdot FD=FH\cdot FB\)

b: Xét tứ giác CFHE có \(\widehat{CEF}=\widehat{CHF}=90^0\)

nên CFHE là tứ giác nội tiếp

Xét tứ giác ABCH có \(\widehat{CAB}=\widehat{CHB}=90^0\)

nên ABCH là tứ giác nội tiếp

Ta có: \(\widehat{AHB}=\widehat{ACB}\)(ABCH là tứ giác nội tiếp)

\(\widehat{EHC}=\widehat{EFC}\)(CFHE là tứ giác nội tiếp)

mà \(\widehat{ACB}=\widehat{CFD}\left(=90^0-\widehat{CDF}\right)\)

nên \(\widehat{AHB}=\widehat{EHC}\)

Ta có: ABCH là tứ giác nội tiếp

=>\(\widehat{ABH}=\widehat{ECH}\)

Xét ΔABH và ΔECH có

\(\widehat{ABH}=\widehat{ECH}\)

\(\widehat{AHB}=\widehat{EHC}\)

Do đó: ΔABH đồng dạng với ΔECH

7 tháng 7 2017

Có AD vuông góc AE (tam giác ABC vuông tại A)

     AD vuông góc DH (D là hình chiếu của H)

Suy ra; AE song song DC (dhnb)

Suy ra góc DHA = HAE (2 góc slt)

Xét tam giác adh vuông tại D và tâm giác HEA vuông tại E có:

               AH chung

              góc DHA = góc HAE (cmt)

suy ra tam giác ADH = tam giác HEA (ch-gn)

suy ra DH = EA (2 cạnh tương ứng)

           AD = HE (2 cạnh tương ứng)

22 tháng 8 2023

bạn ơi, dòng thứ 3 phải là AE // DH đúng ko???

a: Xét ΔAEB có 

EM là đường cao

EM là đường trung tuyến

Do đó: ΔAEB cân tại E