K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2023

loading...  

a) Xét hai tam giác vuông: ∆ABC và ∆HBA có:

∠B chung

⇒ ∆ABC ∽ ∆HBA (g-g)

b) ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pytago)

= 6² + 8²

= 100

⇒ BC = 10

Do ∆ABC ∽ ∆HBA (cmt)

⇒ AC/AH = BC/AB

⇒ AH = AB.AC/BC

= 6.8/10

= 4,8 (cm)

∆ABH vuông tại H

⇒ AB² = AH² + BH² (Pytago)

⇒ BH² = AB² - AH²

= 6² - (4,8)²

= 12,96

⇒ BH = 3,6 (cm)

25 tháng 4 2023

 

a) Ta có:

 

- Góc A của tam giác ABC là góc vuông, nên ta có thể tính được độ dài đoạn thẳng AH bằng cách sử dụng định lí Pythagoras: AH = sqrt(AB^2 + AC^2) = sqrt(6^2 + 8^2) = 10.

 

- Góc A của tam giác ABC cũng là góc giữa đường cao AH và cạnh huyền BC, nên ta có thể tính được tỉ số giữa độ dài đoạn thẳng AH và độ dài cạnh huyền BC: AH/BC = AC/AB = 8/6 = 4/3.

 

- Từ tỉ số này, ta có thể suy ra rằng tam giác ABC đồng dạng với tam giác HBA (vì cả hai tam giác có cùng một góc và tỉ số giữa các cạnh tương ứng bằng nhau).

 

b) Để tính độ dài các cạnh BC, AH, BH, ta có thể sử dụng các công thức sau:

 

- Độ dài cạnh BC: BC = AB/AC * AH = 6/8 * 10 = 15/2 = 7.5.

 

- Độ dài đoạn thẳng BH: BH = sqrt(AH^2 - AB^2) = sqrt(10^2 - 6^2) = 8.

 

- Độ dài đoạn thẳng AH đã được tính ở trên: AH = 10.

 

Vậy độ dài các cạnh BC, AH, BH lần lượt là 7.5cm, 10cm, 8cm.

14 tháng 4 2021

A B C 6 8 H E D

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

c, tam giác ABC vuông tại A, có đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )

\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm 

d, phải là cắt AC nhé, xem lại đề nhé bạn 

 

3 tháng 4 2017

a) Xét tam giác ABC và tam giác HBA
B là góc chung
Góc BAC=góc AHB= 90o

=> tam giác ABC đồng dạng tam giác HBA( g.g)
 

b) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A, ta có
BC2=AC2+AB2
BC2=82+62
BC2=1002=10cm
Xét ta

7 tháng 4 2017

Mình bổ sung nha:

b) Xét tam giác AHB và tam giác ABC có:

Góc BAC = Góc BHA = 900

Góc B chung

Suy ra tam giác AHB đồng dạng tam giác CAB(g.g)

Suy ra AH/AC = AB/BC

Hay AH/8 = 6/10

Suy ra AH= 8*6/10 = 48/10 = 4,8 (cm)

c) Trong tam giác ABH vuông tại H, nên theo định lý Py- ta go ta có:

AB^2= AH^2+BH^2

Suy ra : BH^2= AB^2 - AH^2= \(\sqrt{6^2-4,8^2}=\sqrt{36-23,04=\sqrt{12,96}}\)

Suy ra BH= 3,6 (cm)

Ta có C ABC / C HBA = AB+AC+BC / AB+AH+BH = (6+8+10 )/ (6+4,8+3,6)=24/14,4=5/3

Vậy C ABC/ C HBA = 5/3  

a: Xet ΔABC và ΔHBA có

góc B chung

góc BAC=góc BHA

=>ΔABC đồg dạng với ΔHBA

b: ΔABC vuông tại A mà AH là đường cao

nên HA^2=HB*HC

c: Xet ΔCAD vuông tại A và ΔCHE vuông tai H co

góc ACD=góc HCE

=>ΔCAD đồng dạng với ΔCHE

=>\(\dfrac{S_{CAD}}{S_{CHE}}=\left(\dfrac{CA}{CH}\right)^2=\left(\dfrac{8}{6,4}\right)^2=\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\)

15 tháng 5 2021

a/ \(BC=\sqrt{AB^2+AC^2}=10cm\)

BK là pg \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AK}{CK}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

=> \(\dfrac{AK}{3}=\dfrac{CK}{5}=\dfrac{AC}{8}=1\)

=> AK = 3cm ; CK = 5 cm

b/ Xét t/g ABC và t/g HBA có

\(\widehat{ABC}\) chung

\(\widehat{BAC}=\widehat{AHB}=90^o\)

=> t/g ABC ~ t/g HBA

=> \(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

=> \(AB^2=BC.HB\)

c/ \(\dfrac{BC}{AC}=\dfrac{10}{6}=\dfrac{5}{3}\)

 t/g ABC ~ t/g HBA vs tỉ số đồng dạng là 5/3

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: BC=10cm; AH=4,8cm

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC∼ΔHBA(g-g)

Suy ra: \(\dfrac{S_{ABC}}{S_{HBA}}=\left(\dfrac{BC}{BA}\right)^2=\left(\dfrac{10}{6}\right)^2=\left(\dfrac{5}{3}\right)^2=\dfrac{25}{9}\)

c) Xét ΔABC có BM là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{MA}{AB}=\dfrac{MC}{BC}\)(Tính chất tia phân giác)

hay \(\dfrac{MA}{6}=\dfrac{MC}{10}\)

mà MA+MC=AC=8cm(M nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{MA}{6}=\dfrac{MC}{10}=\dfrac{MA+MC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}MA=3\left(cm\right)\\MC=5\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABM vuông tại A, ta được:

\(BM^2=AB^2+AM^2\)

\(\Leftrightarrow BM^2=6^2+3^2=36+9=45\)

hay \(BM=3\sqrt{5}\left(cm\right)\)

Vậy: AM=3cm; \(BM=3\sqrt{5}\left(cm\right)\)

12 tháng 5 2022

(Tự vẽ hình)

a) Xét \(\Delta AHB\) và \(\Delta CAB\) có:

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta AHB\sim\Delta CAB\) (g.g)

b) Áp dụng định lý Pytago có:

\(BC^2=AB^2+AC^2=8^2+6^2=100\Rightarrow BC=10\left(cm\right)\)

Do \(\Delta AHB\sim\Delta CAB\Rightarrow\left\{{}\begin{matrix}\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=4,8\left(cm\right)\\\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\end{matrix}\right.\)

c) Xét \(\Delta AHB\) và \(\Delta CHA\) có:

\(\widehat{AHB}=\widehat{CHA}=90^0\)

\(\widehat{ABH}=\widehat{CAH}\) (cùng phụ \(\widehat{BAH}\))

\(\Rightarrow\Delta AHB\sim\Delta CHA\) (g.g) \(\Rightarrow\dfrac{AH}{BH}=\dfrac{CH}{AH}\Rightarrow AH^2=BH.CH\)

12 tháng 4 2022

a, Xét tam giác HBA và tam giác ABC có 

^B _ chung ; ^BHA = ^BAC = 900

Vậy tam giác HBA ~ tam giác ABC (g.g) 

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)

\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)

b, Xét tam giác CHI và tan giác CAH có 

^AIH = ^CHA = 900

^C _ chung 

Vậy tam giác CHI ~ tam giác CAH (g.g)

\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)