K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2022

Giúp mình với

8 tháng 5 2017

Hình thì bạn tự vẽ nha

a)Xét tam giác ABC và tam giá HBA, có:

Góc B chung

Góc BAC = góc BHA 

--> Tam giác ABC ~ Tam giác HBA

b)Xét tam giác AHB và tam giác HCA, có

Góc A - góc H

Góc ABH = Góc AHC

-->tam giác AHB ~ tam giác AHC

-->AH/HB = HC/AH

-->AH.AH = HB.HC

-->AH^2=HB.HC(đpcm)

c)

+) Áp dụng định lý PTG vào tam giác vuông ABC, có :

BC^2=AB^2 + AC^2

<--> 6^2 + 8^2 = 100

--> BC = 10(cm)

+)Vì tam giác ABC ~ Tam giác HBA :

AB/HB = BC/BA = AC/HA

-)AB/HB = BC/BA

= 6/HB =10/6

--> HB = 6.6/10

-->HB = 3,6(cm)

-)BC/BA =AC/HA

=10/6 = 8/HA

--> HA = 6.8/10

--> HA = 4,8 (cm)

d) tính tỉ số diện tích thì bạn ghi tỉ số đồng dạng ra rồi bình phương tỉ số đó lên

là đc tỉ số đồng dạng ạ 

8 tháng 5 2017

xét tam giác ABC có BC2=ab2 + ac2

thay số BC2=62+82

BC2=36+64=100

BC=10(cm)

còn lại mình không bít,xin lỗi

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: BC=10cm; AH=4,8cm

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC∼ΔHBA(g-g)

Suy ra: \(\dfrac{S_{ABC}}{S_{HBA}}=\left(\dfrac{BC}{BA}\right)^2=\left(\dfrac{10}{6}\right)^2=\left(\dfrac{5}{3}\right)^2=\dfrac{25}{9}\)

c) Xét ΔABC có BM là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{MA}{AB}=\dfrac{MC}{BC}\)(Tính chất tia phân giác)

hay \(\dfrac{MA}{6}=\dfrac{MC}{10}\)

mà MA+MC=AC=8cm(M nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{MA}{6}=\dfrac{MC}{10}=\dfrac{MA+MC}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}MA=3\left(cm\right)\\MC=5\left(cm\right)\end{matrix}\right.\)

Áp dụng định lí Pytago vào ΔABM vuông tại A, ta được:

\(BM^2=AB^2+AM^2\)

\(\Leftrightarrow BM^2=6^2+3^2=36+9=45\)

hay \(BM=3\sqrt{5}\left(cm\right)\)

Vậy: AM=3cm; \(BM=3\sqrt{5}\left(cm\right)\)

8 tháng 5 2016

a/ Xét tg HBA và tg ABC, có:

góc BHA = góc BAC = 90 độ

góc B chung

Suyra: tg HBA đồng dạng với tg ABC (g-g)

b/ Ta có tg ABC vuông tại A:

\(BC^2=AC^2+AB^2\)

\(BC^2=8^2+6^2=100\)

\(\Rightarrow BC=\sqrt{100}=10\)(cm)

Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)

\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)

\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)

9 tháng 5 2017

a, Xét tg HBA và tgABC:

Có: góc B chung

H=A=90

=> tg HBA đồng dạng ABC (gg)

b, Vì tg BHA đồng dạng tg ABC:

=>AB/HB=BC/AB

=>đpcm.

c, Áp dụng tính chất tia phân giác:

=>AB/AC=BI/IC=>BI/AB=IC/AC

Áp dụng tính chất dãy tỉ số bằng nhau:

BI/AB=IC/AC=BI+IC/AB+AC=BC/AB+AC=10/6+8=5/7

Suy ra: BI=5/7.6=4,3

IC=5/7.8=5,7

Nhớ k nha.