K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔMBE vuông tại M có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔMBE

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

M là trung điểm của BC

=>\(MB=MC=\dfrac{BC}{2}=15\left(cm\right)\)

ΔBAC~ΔBME

=>\(\dfrac{BA}{BM}=\dfrac{BC}{BE}=\dfrac{AC}{ME}\)

=>\(\dfrac{18}{15}=\dfrac{30}{BE}=\dfrac{24}{ME}\)

=>\(\dfrac{30}{BE}=\dfrac{24}{ME}=\dfrac{6}{5}\)

=>BE=25(cm); ME=20(cm)

c: Xét ΔHMC vuông tại M và ΔHAE vuông tại A có

\(\widehat{MHC}=\widehat{AHE}\)(hai góc đối đỉnh)

Do đó: ΔHMC~ΔHAE

=>\(\dfrac{HM}{HA}=\dfrac{HC}{HE}\)

=>\(HM\cdot HE=HC\cdot HA\)

d: Xét ΔCEB có

CA,EM là các đường cao

CA cắt EM tại H

Do đó: H là trực tâm của ΔCEB

=>BH\(\perp\)CE tại N

Xét ΔCNB vuông tại N và ΔCME vuông tại M có

\(\widehat{NCB}\) chung

Do đó: ΔCNB~ΔCME

=>\(\dfrac{CN}{CM}=\dfrac{CB}{CE}\)

=>\(\dfrac{CN}{CB}=\dfrac{CM}{CE}\)

Xét ΔCNM và ΔCBE có

\(\dfrac{CN}{CB}=\dfrac{CM}{CE}\)

\(\widehat{NCM}\) chung

Do đó: ΔCNM~ΔCBE

=>\(\widehat{CMN}=\widehat{CEB}\)

10 tháng 5

loading...  

a) Sửa đề: Chứng minh ∆ABC ∽ ∆MBE

Xét hai tam giác vuông: ∆ABC và ∆MBE có:

∠B chung

⇒ ∆ABC ∽ ∆MBE (g-g)

b) ∆ABC vuông tại A (gt)

⇒ BC² = AB² + AC² (Pythagore)

= 18² + 24²

= 900

⇒ BC = 30 (cm)

Do M là trung điểm của BC (gt)

⇒ BE = BC : 2 = 30 : 2 = 15 (cm)

Do ∆ABC ∽ ∆MBE (cmt)

⇒ AB/MB = AC/EM

⇒ 18/15 = 24/EM

⇒ EM = 15 . 24 : 18 = 20 (cm)

c) Xét hai tam giác vuông: ∆HMC và ∆HAE có:

∠MHC = ∠AHE (đối đỉnh)

⇒ ∆HMC ∽ ∆HAE (g-g)

⇒ HM/HA = HC/HE

⇒ HM.HE = HA.HC

7 tháng 5 2020

eo biet vi lop 5

7 tháng 5 2020

mik ko biết

1 tháng 4 2021

a) Xét tam giác AHD và tam giác CKD có:

AHD=CKD=90

\(D_1=D_2\) (2 góc đối đỉnh)

=> tam giác AHD đồng dạng tam giác CKD (g-g)

=> đpcm

1 tháng 4 2021

b) Xét tam giác AHB và tam giác CKB có

AHB=BKC=90

ABD=DBC ( BD là tia phân giác ABC)

=> Tam giác AHB đồng dạng CKB (g-g)

=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)

a: HE vuông góc AC

AB vuông góc AC

=>HE//AB

b: Xét ΔCAH vuông tại H và ΔCBA vuông tại A có

góc ACH chung

=>ΔCAH đồng dạng với ΔCBA

c: Xét ΔKEH và ΔKBA có

góc KEH=góc KBA

góc EKH=góc BKA

=>ΔKEH đồng dạng với ΔKBA

=>KE/KB=KH/KA

=>EK/EB=HK/HA

Xét ΔEAB có MK//AB

nên MK/AB=EK/EB

Xét ΔHAB có KN//AB

nên KN/AB=HK/HA

=>MK/AB=KN/AB

=>MK=KN

30 tháng 6 2023

Giúp em cái hìnhp

a: Xet ΔEMB vuông tại M và ΔCAB vuông tại A có

góc B chung

=>ΔEMB đồng dạng với ΔCAB

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

ΔEMB đồng dạng vơi ΔCAB

=>EM/CA=MB/AB=EB/CB

=>EM/8=5/6=EB/10

=>EM=20/3cm; EB=10*5/6=50/6=25/3(cm)

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC   .Bài 26...
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do AB⊥AC,HE⊥AB,HF⊥AC

⇒EAF^=AEH^=AFH^=90o

→◊AEHF là hình chữ nhật

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath