Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
a: HE vuông góc AC
AB vuông góc AC
=>HE//AB
b: Xét ΔCAH vuông tại H và ΔCBA vuông tại A có
góc ACH chung
=>ΔCAH đồng dạng với ΔCBA
c: Xét ΔKEH và ΔKBA có
góc KEH=góc KBA
góc EKH=góc BKA
=>ΔKEH đồng dạng với ΔKBA
=>KE/KB=KH/KA
=>EK/EB=HK/HA
Xét ΔEAB có MK//AB
nên MK/AB=EK/EB
Xét ΔHAB có KN//AB
nên KN/AB=HK/HA
=>MK/AB=KN/AB
=>MK=KN
a: Xet ΔEMB vuông tại M và ΔCAB vuông tại A có
góc B chung
=>ΔEMB đồng dạng với ΔCAB
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
ΔEMB đồng dạng vơi ΔCAB
=>EM/CA=MB/AB=EB/CB
=>EM/8=5/6=EB/10
=>EM=20/3cm; EB=10*5/6=50/6=25/3(cm)
a: Xét ΔABC vuông tại A và ΔMBE vuông tại M có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔMBE
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)
M là trung điểm của BC
=>\(MB=MC=\dfrac{BC}{2}=15\left(cm\right)\)
ΔBAC~ΔBME
=>\(\dfrac{BA}{BM}=\dfrac{BC}{BE}=\dfrac{AC}{ME}\)
=>\(\dfrac{18}{15}=\dfrac{30}{BE}=\dfrac{24}{ME}\)
=>\(\dfrac{30}{BE}=\dfrac{24}{ME}=\dfrac{6}{5}\)
=>BE=25(cm); ME=20(cm)
c: Xét ΔHMC vuông tại M và ΔHAE vuông tại A có
\(\widehat{MHC}=\widehat{AHE}\)(hai góc đối đỉnh)
Do đó: ΔHMC~ΔHAE
=>\(\dfrac{HM}{HA}=\dfrac{HC}{HE}\)
=>\(HM\cdot HE=HC\cdot HA\)
d: Xét ΔCEB có
CA,EM là các đường cao
CA cắt EM tại H
Do đó: H là trực tâm của ΔCEB
=>BH\(\perp\)CE tại N
Xét ΔCNB vuông tại N và ΔCME vuông tại M có
\(\widehat{NCB}\) chung
Do đó: ΔCNB~ΔCME
=>\(\dfrac{CN}{CM}=\dfrac{CB}{CE}\)
=>\(\dfrac{CN}{CB}=\dfrac{CM}{CE}\)
Xét ΔCNM và ΔCBE có
\(\dfrac{CN}{CB}=\dfrac{CM}{CE}\)
\(\widehat{NCM}\) chung
Do đó: ΔCNM~ΔCBE
=>\(\widehat{CMN}=\widehat{CEB}\)
a) Sửa đề: Chứng minh ∆ABC ∽ ∆MBE
Xét hai tam giác vuông: ∆ABC và ∆MBE có:
∠B chung
⇒ ∆ABC ∽ ∆MBE (g-g)
b) ∆ABC vuông tại A (gt)
⇒ BC² = AB² + AC² (Pythagore)
= 18² + 24²
= 900
⇒ BC = 30 (cm)
Do M là trung điểm của BC (gt)
⇒ BE = BC : 2 = 30 : 2 = 15 (cm)
Do ∆ABC ∽ ∆MBE (cmt)
⇒ AB/MB = AC/EM
⇒ 18/15 = 24/EM
⇒ EM = 15 . 24 : 18 = 20 (cm)
c) Xét hai tam giác vuông: ∆HMC và ∆HAE có:
∠MHC = ∠AHE (đối đỉnh)
⇒ ∆HMC ∽ ∆HAE (g-g)
⇒ HM/HA = HC/HE
⇒ HM.HE = HA.HC