Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự kẻ hình
a) - Vì tam giác ABC vuông tại A (gt)
=> tam giác ABD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác EBD vuông tại E (tc)
- Xét tam giác vuông ABD và tam giác vuông EBD, có:
+ Chung BD
+ góc ABD = góc EBD ( BD là p/giác góc ABC)
=> tam giác vuông ABD = tam giác vuông EBD (cạnh huyền - góc nhọn)
b) - Vì tam giác vuông ABD = tam giác vuông EBD (cmt)
=> AD = ED ( 2 cạnh tương ứng )
- Vì tam giác ABC vuông tại A (gt)
=> tam giác AMD vuông tại A
- Vì DE vuông góc với BC (gt)
=> tam giác ECD vuông tại E (tc)
- Xét tam giác vuông AMD và tam giác vuông ECD, có:
+ AD = ED (cmt)
+ góc ADM = góc EDM (đối đỉnh)
=> tam giác vuông AMD = tam giác vuông ECD (cạnh góc vuông - góc nhọn kề)
=> DM = DC (2 cạnh tương ứng)
c) - Vì tam giác vuông AMD = tam giác vuông ECD (cmt)
=> AM = EC (2 cạnh tương ứng)
- Xét tam giác vuông AMD, có
AD + AM > DM (bất đẳng thức tam giác)
Mà AM = EC (cmt)
=> AD + EC > DM (đpcm)
a) Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E
có: BD là cạnh chung
góc ABD = góc EBD (gt)
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
b) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AB = EB = 6 cm ( 2 cạnh tương ứng)
=> EB = 6 cm
Xét tam giác ABC vuông tại A
có: \(AB^2+AC^2=BC^2\left(py-ta-go\right)\)
thay số: \(6^2+8^2=BC^2\)
\(\Rightarrow BC^2=100\)
\(\Rightarrow BC=10cm\)
mà \(E\in BC\)
=> EB + EC = BC
thay số: 6 + EC = 10
EC = 10 - 6
=> EC = 4 cm
c) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng)
AB = EB ( 2 cạnh tương ứng) (1)
Xét tam giác ADI vuông tại A và tam giác EDC vuông tại E
có: AD = ED ( chứng minh trên)
góc ADI = góc EDC ( đối đỉnh)
\(\Rightarrow\Delta ADI=\Delta EDC\left(cgv-gn\right)\)
=> AI = EC ( 2 cạnh tương ứng)(2)
Từ (1);(2) => AB + AI = EB + EC
=> BI = BC
=> tam giác BIC cân tại B ( định lí tam giác cân)
d) ta có: \(\Delta ABD=\Delta EBD\left(pa\right)\)
=> AD = ED ( 2 cạnh tương ứng) (1)
Xét tam giác EDC vuông tại E
có: ED < DC ( định lí cạnh góc vuông, cạnh huyền) (2)
Từ (1);(2) => AD <DC
mk ko bít kẻ hình trên này!
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=EB
b: AB<AC
=>góc C<góc B
=>góc C<45 độ
=>gócEDC>45 độ
=>góc C<góc EDC
=>ED<EC
=>DA<AM<DM
a: góc ACB=90-50=40 độ
b: Xét ΔBAD va ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
Do đó: ΔBAD=ΔBED
c: Xét ΔADM vuông tại A và ΔEDC vuông tạiE có
DA=DE
góc ADM=góc EDC
Do đó: ΔADM=ΔEDC
=>DM=DC
a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)
hay 92 + 122 = BC2
=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm
trong tam giác ABC có: AB < AC < BC
=> góc C < góc B < góc A (định lý)
b) xét tam giác ABD và tam giác MBD có:
góc A = góc M = 900 (gt)
BD chung
góc B1 = góc B2 (gt)
=> tam giác ABD = tam giác MBD (ch-gn)
c) xét tam giác ADE và tam giác MCD có:
góc A = góc M = 900 (gt)
AD = DM (tam giác ABD = tam giác MBD)
góc ADE = góc MDC (đối đỉnh)
=> tam giác ADE = tam giác MDC (g.c.g)
=> AE = MC (cạnh tương ứng)
ta có: BE = BA + AE
BC = BM + MC
mà BA = BM (tam giác ở câu a)
AE = MC (cmt)
=> BE = BC
=> tam giác BEC cân tại E
hok tốt