K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

6 tháng 4 2022

a) Xét ∆ABC và ∆HBA, ta có:
<A=<H=90° 
<B chung
⟹∆ABC∼∆HBA(g.g)
b) Áp dụng định lý py-ta-go vào ∆ABC(<A=90°(gt)) , ta có:
     BC2 =AB2+AC2
            =82+62=64+36=100
⟹BC=√100=10cm
Ta có: AC/HA=BC/AB ( Vì ∆ABC∼∆HBA(CM ở a))
⟹6/HA=10/8⟹HA=6*8/10=4,8cm
 

9 tháng 4 2021

A B C H D I

9 tháng 4 2021

a) Vì \(\Delta ABC\) vuông tại A (giả thiết).

\(\Rightarrow AB^2+AC^2=BC^2\)(định lí Py-ta-go).

\(\Rightarrow6^2+8^2=BC^2\)(thay số).

\(\Rightarrow BC^2=36+64=100\)

\(\Rightarrow BC=10\left(cm\right)\)(vì \(BC>0\)).

Xét \(\Delta ABC\)có phân giác BD (giả thiết).

\(\Rightarrow\frac{AD}{CD}=\frac{AB}{CB}\)(tính chất).

\(\Rightarrow\frac{AD}{CD+AD}=\frac{AB}{CB+AB}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{AD}{AC}=\frac{AB}{BC+BA}\)

\(\Rightarrow\frac{AD}{8}=\frac{6}{6+10}=\frac{6}{16}=\frac{3}{8}\)(thay số).

\(\Rightarrow AD=\frac{3}{8}.8=3\left(cm\right)\)

Do đó \(CD=AC-AD=8-3=5\left(cm\right)\)

Vậy \(AD=3\left(cm\right),CD=5\left(cm\right)\)

23 tháng 3 2022

a) Xét ΔABC và ΔHBA có
chung góc B
BAC = AHC (=90°)
=> ΔABC ∽ ΔHBA(gg)

\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BD là phân giác

=>DA/AB=DC/BC

=>DA/3=DC/5=8/8=1

=>DA=3cm; DC=5cm

a: BC=căn 6^2+8^2=10cm

AD là phân giác

=>DB/AB=DC/AC

=>DB/3=DC/4=(DB+DC)/(3+4)=10/7

=>DB=30/7cm; DC=40/7cm

b: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

c: AH=8*6/10=4,8cm

HB=6^2/10=3,6cm

CH=10-3,6=6,4cm

S AHB=1/2*4,8*3,6=8,64cm2

S AHC=1/2*4,8*6,4=15,36cm2

12 tháng 5 2021

A B C 6 8 10 H D D

a, dễ mà dài, bạn tự làm nhé 

b, Vì AD là đường pg của tam giác ABC nên 

\(\frac{AC}{AB}=\frac{CD}{BD}\)( tính chất )

mà \(BD=BC-CD=10-CD\)(*)

\(\Rightarrow\frac{8}{6}=\frac{CD}{10-CD}\Rightarrow CD=\frac{40}{7}\)cm 

Theo (*) suy ra : \(BD=10-\frac{40}{7}=\frac{30}{7}\)cm 

25 tháng 4 2021

27 tháng 3 2021

a/ \(BD\) là đường phân giác \(\widehat{BAC}\)

\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\to\begin{cases}DA=3\\DC=5\end{cases}\)

b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)

\(\to AB.AC=AH.BC\)

\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm